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Abstract

Current and future galaxy surveys will be able to map the large-scale structure of the
Universe with unprecedented detail and measure cosmological parameters with exquisite
precision. In order to develop the science cases and the analysis pipelines, it is necessary
an accurate modelling of the non-linear gravitational evolution. This thesis presents a
methodology for producing accurate mock catalogues, much faster than conventional
methods (2-3 orders of magnitude) and incorporating past light cone effects.

First, we present the optimization of a quasi N -body method in the compromise be-
tween accuracy and computational cost. We studied how variations in the code param-
eter space have and impact on the accuracy of observables such as the halo abundance
and distribution and matter clustering. We propose optimal parameter configurations
for achieving high accuracy as compared to exact N -body simulations and we explore
different calibration techniques to match even better two-point halo clustering statistics.

The next step is mimicking the geometry of real astrophysical observations, in which
distant objects are seen in the past light cone. We introduce ICE-COLA, a simulation
code developed for this thesis that implements the production of light cone catalogues
on-the-fly. The user can generate three different kinds of data types. The first contains all
the information of the phase-space matter distribution while the others store high-level
data catalogues ready to use to model galaxy surveys. This enables large compression
factors of ⇠ 2 orders of magnitude in the data volume to be stored. In particular, the code
can generate halo catalogues in the light cone and pixelated two-dimensional projected
matter density maps in spherical concentric shells around the observer.

Using ICE-COLA we produce large light cone simulations and perform an extensive
validation of the catalogues. We introduce a novel methodology to model weak gravi-
tational lensing with an approximate method and we show that we can resolve most of
the scales probed by current weak lensing experiments. Finally we extend the results
to halo mock catalogues with weak lensing quantities, which represents a key step for-
ward modelling galaxy clustering and weak lensing observables consistently in a quasi
N -body approach.
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1

INTRODUCTION

Seeing is in some respect an art, which must be learnt.

Sir William Hershchel

Motivation

Present and planned galaxy surveys like the Dark Energy Survey1 (DES, The Dark En-
ergy Survey Collaboration, 2005), the Kilo Degree Survey (KiDS; de Jong et al., 2013) the
Large Synoptic Survey Telescope2 (LSST, LSST Science Collaboration et al., 2009), Euclid3

(Laureijs et al., 2011) , the Wide-Field Infrared Survey Telescope – Astrophysics Focused
Telescope Asset4 (WFIRST–AFTA; Spergel et al., 2013), the Extended Baryon Oscillation
Spectroscopic Survey5 (eBOSS, Dawson et al., 2016), the Dark Energy Spectroscopic In-
strument6 (DESI, Levi et al., 2013), will generate a wealth of high-quality data that will
allow to test the nature of dark matter and dark energy and constrain possible deviations
from the standard cosmological model based on General Relativity (for reviews or text-
books see e.g. Peebles, 1980; Dodelson, 2003; Albrecht et al., 2006; Weinberg et al., 2013;
Joyce et al., 2016).

Galaxy clustering encompasses a wide class of observational probes that aim at ex-
tracting cosmological information from the distribution of galaxies in the sky. Galaxy
clusters are the final result of the amplified primordial fluctuations by gravity, and ana-
lysing their correlations it is possible to test the theories of gravity, the expansion history
and the matter content of the Universe (Allen et al., 2011; Silk et al., 2013). In particu-
lar, Baryon Acoustic Oscillations (BAO) leave an imprint on the matter distribution that
can be measured as an excess of clustering of galaxies at a certain scale (for a review, see
Bassett et al., 2010). Therefore, it provides a standard ruler that can be measured with
two-point statistics. The first detection of this signature was reported in 2005 by Eisen-
stein et al., 2005 using data from the Sloan Digital Sky Survey (SDSS, York et al., 2000).

1http://www.darkenergysurvey.org/
2http://www.lsst.org
3http://www.euclid-ec.org/
4http://wfirst.gsfc.nasa.gov/
5http://www.sdss.org/surveys/eboss/
6http://desi.lbl.gov/

http://www.darkenergysurvey.org/
http://www.lsst.org
http://www.euclid-ec.org/
http://wfirst.gsfc.nasa.gov/
http://www.sdss.org/surveys/eboss/
http://desi.lbl.gov/
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In the present, the most precise BAO measurements derive from the Baryonic Oscillation
Spectroscopic Survey (BOSS) DR12 galaxy sample (Cuesta et al., 2016; Gil-Marin et al.,
2016), which provided a measurement of the BAO scale at the mean redshift z = 0.57 with
a precision almost at the percent level. See the left panel in Fig. 1 for the cosmological
constraints from BOSS.

Another major observable of galaxy surveys is weak gravitational lensing. This effect
is the consequence of light rays being bended by massive objects as they travel through
the Universe, as predicted by Albert Einstein’s general theory of relativity. It is a phe-
nomenon that carries information about the matter distribution along the line-of-sight
and therefore it is an invaluable tool for probing cosmological models, such as the theory
of gravity, the properties of dark matter and dark energy or the physics at inter-cluster
scales (for comprehensive reviews, see Bartelmann et al., 2001; Huterer, 2010; Kilbinger,
2015). There are many applications of weak gravitational lensing. Cosmic shear is the
analysis of tidal deformation of images, causing galaxy shapes to have coherent dis-
tortions. By averaging over many galaxies, their intrinsic orientations (if random), are
expected to be cancelled, and the lensing signal can then be measured. The first detec-
tions of cosmic shear were done in 2000 by several independent groups (Bacon et al.,
2000; Kaiser et al., 2000; Van Waerbeke et al., 2000; Wittman et al., 2000; Miyazaki et al.,
2002), in fields that ranged from 0.5 to 2 deg

2. Next milestones were set by the Canada-
France Hawaii Legacy Survey (CFHTLS; Hoekstra et al., 2006) and the CFHT Lens Sur-
vey (CFHTLenS; Kilbinger et al., 2013), which by measuring the two-dimensional shear
correlation function in an observed area of more than 100 deg

2 were able to constrain
cosmological parameters (see right panel in Fig 1).

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.2
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FIGURE 1: Left: Constraints on the expansion rate and the matter content from BOSS
in combination with other probes. Right: contours on the �8 � ⌦

m

plane from the
CFHTLLens survey and other data sets. (From Cuesta et al., 2016 and Kilbinger et al.,

2013 for BOSS and CFHTLenS respectively).

Building upon these first measurements, ongoing shear surveys rely on observing



Contents 3

large samples of galaxies in multiple photometric bands and estimating radial distances
thanks to photometric redshifts. However, the covered area is now being increased by an
order of magnitude. This is the case of KiDS and DES, which will observe 1500 and 5000
deg

2 respectively once they are completed. Nonetheless, next generation projects will
cover most of the extragalactic sky, such as the LSST, Euclid and WFIRST–AFTA. Weak
lensing is currently entering a golden era in which statistical uncertainties are being re-
duced drastically. In the near future it may become one of the most powerful cosmologi-
cal probes if systematic effects are controlled in the modelling and analysis so that become
sub-dominant in the overall error budget. Likelihood analyses use theoretical predictions
of covariance matrices, which are hard to model for weak lensing since it is an observable
that probes highly non-linear scales at the same time that samples very large volumes.
Standard numerical simulation methods of large-scale structure formation are able to ac-
curately model cosmological observables but become prohibitively expensive if a large
number of realizations are required ljto estimate covariances by Monte-Carlo methods.

An optimal extraction of cosmological parameters from those very large and com-
plex datasets will ultimately rely on our ability to model cosmological observables and
their covariances with high accuracy. This entails the development of synthetic obser-
vations based on mock catalogues produced from numerical simulations, that allow to
optimize the pipelines, model and mitigate systematic effects, calibrate algorithms, test
new techniques, etc. The requirement of sampling large cosmological volumes while still
resolving small scales is a big challenge to current N -body simulation codes (some state-
of-the-art simulations are Teyssier et al., 2009; Kim et al., 2011; Angulo et al., 2012; Alimi
et al., 2012; Watson et al., 2013; Klypin et al., 2013; Skillman et al., 2014; Heitmann et al.,
2014; Fosalba et al., 2015a; for a review see Kuhlen et al., 2012). Moreover, hundreds or
thousands of realizations are needed for robustly estimating covariance matrices (cru-
cial for cosmological parameter estimation, see Taylor et al., 2013; Blot et al., 2015) or
for propagating errors in complex and non-linear analysis (e.g. Baryon Acoustic Oscil-
lations reconstruction, see Takahashi et al., 2009; Manera et al., 2013; Kazin et al., 2014;
Ross et al., 2015). Yet, producing massive ensembles of N -body mocks is computation-
ally prohibitive and alternative routes need to be devised in order to face the enormous
challenge. This is what approximate methods aim to solve, which overcome the prob-
lem of explicitly solving the non-linear evolution by incorporating a simpler yet accurate
modelling of the small-scale physics.

Most of the experiments mentioned in this introduction probe both weak lensing
and galaxy clustering simultaneously. Combining both in a single analysis is definitely
the best way to tighten cosmological constraints, since degeneracies affecting individual
probes can be broken, mitigating also the impact of their corresponding systematic ef-
fects. In the roadmap for designing and optimally exploiting next generation of galaxy
surveys it is therefore necessary to model accurately both observables in a consistent
way and produce thousands of mock catalogues to analyse the data. This thesis presents
a methodology to achieve that goal. A fast method is optimized in the compromise be-
tween accuracy and computational cost. Efficient light cone simulations are developed
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and they are used to model galaxy clustering and weak lensing coherently. The method
and its accuracy are validated against full N -body simulations, which typically require
between 2 and 3 orders of magnitude more computing time.

Contents of this thesis

This thesis is organized as follows. Chapter 1 gives a general introduction to observa-
tional cosmology, with special emphasis on large-scale structure concepts and the for-
malism of weak gravitational lensing. Chapter 2 reviews the methods to produce mock
catalogues, both from N -body simulations and approximate methods. It explains the N -
body simulation used in this thesis as a benchmark, the Marenostrum Institut de Cièn-
cies de l’Espai-Grand Challenge (MICE-GC), as well as the fast method extensively used,
tested and expanded in this work: COLA. In the last section we detail all the simulations
developed for this thesis. Chapter 3 is where the first results are discussed, presenting an
optimization of the simulation method employed in a compromise between accuracy and
computational cost. It studies the impact of variations of the internal code parameters
on observable quantities and determines the optimal set-up. From Chapter 4 onwards
the work is based on new light cone simulations developed with ICE-COLA. First is ex-
plained the algorithm for generating such catalogues on-the-fly, able to deliver high-level
data products tailored for modelling galaxy surveys, and the performance of the method
is discussed at length. After, Chapter 5 presents a basic validation of such simulations
and a description of the pipeline developed to model weak lensing quantities. A further
validation of the maps is discussed in terms of the two-point statistics. Finally, Chapter
6 shows how halo catalogues are combined together with weak lensing maps to model
consistently both weak lensing and galaxy clustering from the same simulation. Lastly,
some prospects of ongoing and future projects are outlined in Chapter 7 and a summary
with conclusions is given in Chapter 8. In addition, Appendix A explains how transient
effects were considered when comparing COLA simulations with MICE-GC, whereas Ap-
pendix B compares the gain of the COLA method with respect to Particle-Mesh-only runs.
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1
OBSERVATIONAL COSMOLOGY

During the recent history, our conception of the Universe has radically changed by reject-
ing those theories that do not surpass the exam of observational evidences. The Ptole-
maic model placed the Earth in the centre of the cosmos. The Copernican Revolution,
starting in 1543, displaced ourselves for the first time from the centre by using an he-
liocentric model. After important contributions by Tycho Brahe, Johannes Kepler and
Galileo Galilei, the revolution concluded in 1687 when Newton published in his Principia
the law of universal gravitation, which allowed to describe mathematically the dynamics
of the orbits of the planets. The Copernican Revolution implies the renounce of a privi-
leged position for the Earth and a greater generalization of it is the so called Cosmological
Principle:

The Universe is homogeneous and isotropic at large scales

Or in other words, the same physical laws are valid everywhere, i.e., there are no
privileged observers. Modern cosmology assumes this axiom, which actually has been
proved to a high degree of accuracy (see e.g., Planck Collaboration et al., 2015a for the
isotropy of the Cosmic Microwave Background, CMB, as measured by the European
Space Agency Planck satellite mission). In this framework, the evolution of the Universe
can be decomposed into two pieces: the background evolution, that describes the metric
and properties of the homogeneous Universe, and the structure formation at small scales,
that studies the departures from homogeneity. This Chapter gives an introduction to both
aspects in § 1.2 and § 1.3 respectively. Before, § 1.1 describes the consensus cosmological
model briefly. Finally, § 1.4 gives the basic principles of weak gravitational lensing, which
is a powerful observational probe.
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1.1 The ⇤CDM model

The ⇤CDM model is the current consensus cosmological model (Hamilton, 2013) that ex-
plains most of the observations, such as the abundances of light elements, the properties
of the CMB radiation (Planck Collaboration et al., 2015b), supernova type Ia data (Suzuki
et al., 2012) and the large-scale structure clustering (Anderson et al., 2012). The model
is built on the cosmological principle and adopts the concept of Big Bang, in which the
Universe has been expanding from an initial singularity. Assumes the General Relativ-
ity theory as a model for gravity but needs to postulate the existence of some unknown
fluids: dark matter and dark energy.

In 1933, Zwicky studied the dynamical state of the Coma cluster and found the first
evidences of the problem of the missing matter (Zwicky, 1933). This was later confirmed
by other observational techniques, such as velocity rotational curves of galaxies, gravita-
tional lensing and the large-scale structure formation. The ⇤CDM model postulates the
existence of a form of Cold Dark Matter (CDM), that has the properties of only interacting
through gravity and being non-relativistic.

Dark energy was introduced after 1998, when two different teams (High-Z Supernova
Research Team and Supernova Cosmology Project) were searching for type Ia supernovae
for using them as standard candles. Their findings showed an unexpected accelerated ex-
pansion rate (Riess et al., 1998; Perlmutter et al., 1999). The simplest for of the standard
cosmological model includes a dark energy fluid with a constant equation of state param-
eter w =

P/⇢ = �1, corresponding to a cosmological constant, that causes the repulsive
force.

Current tightest constraints on cosmological parameters suggest that the energy bud-
get of the Universe consists on: 5% of baryonic matter, 27% of dark matter and 68% of
dark energy, being consistent with a flat geometry (Planck Collaboration et al., 2015b).
Our understanding of the Universe has progressed much in the last decades, but there
are still some missing pieces that have to be addressed. This includes topics such as the
mass of neutrinos, possible deviations from general relativity on the largest scales, early
massive black hole formation, the mechanism responsible of inflation..., as well as the
nature of the elusive dark matter and dark energy.

1.2 Dynamics of the expansion

In general relativity, the metric has a central role in the description of the Universe as a
whole. The Friedmann-Lemaître-Robertson-Walker (FLRW) metric provides the geome-
try of an homogeneous and isotropic Universe

ds2 = c2dt2 � a(t)
⇥
dr2 + S2

k(r)(d✓
2
+ sin

2 ✓ d�2
)

⇤
, (1.1)
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where r is a radial comoving distance, ✓ and � are angular coordinates, a is the scale factor
and Sk depends on the curvature k of the Universe and can be

Sk(r) =

8
>>><

>>>:

sinh(r) k = �1

r k = 0

sin(r) k = +1.

(1.2)

By introducing the FLRW metric into the General Relativity field equations, the Fried-
mann equations can be derived

H2 ⌘
✓
ȧ

a

◆2

=

8⇡G⇢

3

� kc2

a2
+

⇤c2

3

, (1.3)

where H is the Hubble parameter, ⇢ includes the contributions to the density from the
matter and the radiation and ⇤ is the cosmological constant. This is the first of the Fried-
mann’s equations, that relates the geometry and the density. For instance, the critical
density can be defined as the value that corresponds to a flat Universe (k = 0)

⇢c =
3H2

8⇡G
. (1.4)

It is useful to use the density parameters, which re-scale the density contributions
relative to the critical density

⌦i ⌘ ⇢i
⇢c

(1.5)

⌦m =

8⇡G⇢0
3H2

0

(1.6)

⌦r =
8⇡G⇢r,0
3H2

0

(1.7)

⌦⇤ =

⇤c2

3H2
0

(1.8)

⌦k =

�kc2

(a0H0)
2
, (1.9)

where the subscript 0 indicates that a quantity is evaluated at the present. These pa-
rameters have been defined to fulfil the relation 1 = ⌦m + ⌦r + ⌦⇤ + ⌦k. Thereby, the
Friedmann equation read

H2
(z) = H2

0E
2
(z) = H2

0

�
⌦r(1 + z)4 + ⌦m(1 + z)3 + ⌦k(1 + z)2 + ⌦⇤

�
, (1.10)

where it was introduced the function E(z) and the present day Hubble constant: H0 ⌘
100h km/s/Mpc. Applying the FLRW metric (equation 1.1) to a photon, ds2 = 0, and inte-
grating over the radial coordinate, the relation between the comoving distance and the
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redsfhit can be written as

�(z) =
c

H0

Z z

0

dz0

E(z0)
. (1.11)

1.3 Large-scale structure formation

The large-scale structure is the gravitationally amplified result of the initial quantum
fluctuations that arose in the early and hot Universe. Inhomogeneities grow driven by
the gravitational attraction, resulting in bound objects, such as stars, galaxies and galaxy
clusters, that were born the firsts few hundreds millions of years after the Big Bang. The
underlying physics of the processes leading to structure formation have been extensively
explained in many books (see e.g. Peacock, 1999; Peebles, 1980; Liddle et al., 2000). This
section focuses on the gravitational evolution of density perturbations at large scales and
on their statistical description. In what follows, the density refers to the contribution of
both the dark matter and the baryon components.

The dimensionless density contrast is defined as the relative deviation from the mean
matter density ⇢̄

�(x) =
⇢(x)

⇢̄
� ⇢̄. (1.12)

The two-point correlation function is the expected excess of probability with respect to a
homogeneous distribution of having two over-densities separated by a distance r

⇠(r) =< �(x)�(x+ r) >, (1.13)

which thanks to isotropy it does not depend on the angular part. The power spectrum is
the equivalent correlator in Fourier space

P (k) =

Z
⇠(r)eikx d3x . (1.14)

Fourier transforming the density field gives

�(k) =

Z
�(x)eikx d3x (1.15)

and for Gaussian fields, different modes are uncorrelated

< �(ki)�(kj) >= (2⇡)2�D(ki � kj)P (ki), (1.16)

where �D is the Dirac delta function and k is the modulus of the wavenumber k.
A Gaussian field is completely characterized by its 2-point statistics: any non-vanish-

ing higher order moment can be expressed as a function of the former. Or in other words,
all reduced higher order moments vanish.
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1.3.1 Linear growth of structure

Inhomogeneities in the initial density field �(x) grow due to the gravitational forces. In a
matter-dominated epoch, the Poisson equation can be written as

r2� =

3H2
0

2a
⌦0�. (1.17)

In the linear regime, perturbations are small (i.e. � ⌧ 1) and follow a second order partial
differential equation

¨� + 2H ˙� � 3

2a3
⌦0H

2
0� = 0. (1.18)

The fact that there are only temporal derivatives implies that the temporal evolution is
the same at all positions, and the solution can be expressed by the linear growth rate
function (see e.g., Dodelson, 2003)

D1(z) =
5⌦0E(z)

2

Z 1

z

1 + z0

E(z0)
dz0, (1.19)

which in the Einstein-de Sitter case, it is simply D1(a) = a.
Therefore, the evolution of perturbations in the linear regime is given by the linear

growth factor: �(x, z) = �(x, z0)D1(z)/D1(z0). And the matter power spectrum grows as
P (k, z) = [D1(z)/D1(z0)]

2P (k, z0).
The evolution of differential mass elements (or particles, which are the elements that

sample the phase space in an N -body simulation, see § 2.1) can be expressed in terms
of the growth factor as well in a perturbative approach. The displacement field s(q, a)

is defined as the difference between the Eulerian position x(q, a) and the Lagrangian
(initial) position q:

s(q, a) = x(q, a)� q. (1.20)

In Lagrangian Perturbation Theory (LPT, for reviews see Bernardeau et al., 2002; Bouchet
et al., 1995), the displacement field can be expanded to second order as

s(q, a) = D1(a)s1(q, a) +D2(a)s2(q, a), (1.21)

where sub-indices now distinguish between the linear (or Zel’dovich, see Zel’dovich,
1970) and the second-order perturbative terms. The linear displacement field depends on
the gradient of the potential at lagrangian positions, while the second order component
includes tidal distortions.

1.3.2 Non-linear evolution

At late times, the condition � ⌧ 1 is no longer satisfied for all scales. Small-scale fluctua-
tions grow beyond the collapse threshold and start a gravitational collapse (see e.g. Press
et al., 1974). As a result, bounded objects of dark matter are formed and sustained by
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virialization. These are called haloes and galaxies, the baryonic component, are believed
to form inside them.

Initially the density field can be well described as a Gaussian field. Different modes
are uncorrelated (see equation 1.16) and the covariance of the power spectrum is diago-
nal, with the variance given by

�2
(P (k)) =

2P 2
(k)

Nmodes
, (1.22)

where Nmodes is the number of k-modes contributing to the measurement at the wavenum-
ber k (i.e. Nmodes ⇡ k2�kV/(2⇡)2 with V being the volume and �k the width of the
bin). The non-linear evolution couples different modes, there is a transfer of power from
large to small scales and the amplitude of small-scale fluctuations deviates from the lin-
ear growth rate. This is visible in the matter power spectrum as the so-called non-linear
bump for modes k � 0.1h�1

Mpc. Fig. 1.1 displays the non-linear matter power spec-
trum measured in a COLA simulation, where it is visible the deviations from linear theory
at small scales and the smoothing of the Baryon Acoustic Oscillations (BAO) feature due
to mode coupling (see Beutler et al., 2015; Fosalba et al., 2015a; Ross et al., 2015 for how
non-linear effects in the BAO are modelled by simulations). The non-linear covariance
matrix is shown in Fig. 1.2, where it becomes evident a large correlation between different
modes for scales k > 0.2hMpc

�1.

 160
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 220

 0.1

k1.
5 *P

k(
z)

/D
2 (z

)

k [h/Mpc]

Linear
z=0.00
z=0.57
z=1.00
z=2.00

FIGURE 1.1: Matter power spectra at four different redshifts from a COLA simulation
compared to the linear power spectrum. All power spectra have been scaled by the lin-
ear growth factor (see equation 1.19) to redshift 0. The non-linear evolution is clearly
visible at scales k > 0.15hMpc

�1, where the power deviates progressively from linear
theory with time. Note as well how Baryon Acoustic Oscillations, that extend to large

scales, are damped.

The non-linear regime becomes much more difficult to determine analytically as the
perturbative scheme breaks down and for an accurate modelling it is necessary to resolve
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FIGURE 1.2: Correlation matrix of the matter power spectrum measured from a set of
100 COLA simulations at redshift 0. The prediction for a Gaussian field is the identity
matrix, but departures from that are evident in this plot for k > 0.2hMpc

�1, where
off-diagonal elements display strong correlations between different modes.

the full dynamics exactly using N -body simulations.

1.3.3 Halo and galaxy Bias

Haloes are formed in high density regions of the matter field. Thus their distribution
is correlated with the peaks of the matter distribution. However, and according to the
peak-background split theory (Bardeen et al., 1986; Cole et al., 1989; Sheth et al., 1999),
it is harder for density peaks in low density environments to reach the collapse thresh-
old and less haloes will be able form in these regions. Therefore, the halo formation is
enhanced in rich environments and suppressed in voids, producing relative variations in
the abundance larger than those of the density. The consequence is that haloes are biased
tracers of the matter field, where biasing means an enhanced clustering. The concept ap-
plies as well to galaxies, since these inhabit in haloes, and are referred as halo or galaxy
bias. At first order, the bias can be expressed as (Fry et al., 1993)

�h(k, z) = bh(k, z)�(k, z). (1.23)

In this case, the halo power spectrum would be given by

Ph(k, z) = b2h(k, z)P (k, z). (1.24)

Bias might depend on the scale, the epoch and the properties of the tracer object (in
the case of haloes for instance, their mass). The expansion can also be carried to higher
orders, yielding a full hierarchy of bias parameters.
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1.4 Principles of weak gravitational lensing

One of the predictions of Albert Einstein’s general theory of relativity is that light paths
are bent by the matter inhomogeneities of the Universe via the distortions that are pro-
duced in the metric tensor of space-time. In fact, Newtonian physics can also explain
this phenomenon, but it predicts an effect a factor of two weaker. Images of distant ob-
jects are distorted by the intervening matter distribution , inducing changes in shapes,
apparent positions and fluxes of the background population. In most situations the ef-
fect is small, since relative variations are at the percent level, and then it is referred as
weak gravitational lensing. It is a phenomena that carries information about the matter
distribution along the line-of-sight and therefore it is an invaluable tool for probing cos-
mological models, such as the theory of gravity, the properties of dark matter and dark
energy or the physics at inter-cluster scales. This section gives an overview of the math-
ematical description of this phenomena in order to present expressions that are used in
later chapters. For extensive reviews see Narayan et al., 1996; Bartelmann et al., 2001;
Van Waerbeke et al., 2003; Munshi et al., 2008; Huterer, 2010; Kilbinger, 2015.

Observer�

Lens plane�

Source plane�

θ�

β�

ξ�

α^�

η�

Dds�

Dd�

Ds�

FIGURE 1.3: Sketch of the geometry of the gravitational lensing effect (from Bartel-
mann et al., 2001).

1.4.1 Lens equation

The geometry of the gravitational lensing effect is mainly a three-object system, formed
by a source, a lens and an observer, as sketched in Fig. 1.3. The source object at the
background emits a ray that traverses the surroundings of a massive body, where it is de-
flected and is received by the observer at an angle ✓, different than the angle � subtended
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by the straight line that connects the observer with the source. For small deflection an-
gles, the phenomenon can be approximated to the problem in optics of a single thin lens,
governed by the lens equation

� = ✓ � �s � �l

�s
ˆ

↵ ⌘ ✓ �↵, (1.25)

where �s and �l are the comoving distances to the source and the lens respectively and
ˆ

↵ is the deflection angle caused by the three-dimensional gravitational potential � of the
lens

ˆ

↵ = � 2

c2

Z
r?�(�

0
) d�0 . (1.26)

The integral is taken along the light path and the gradient perpendicular. In the last step
of eq. 1.25 we defined the scaled deflection angle ↵. The expression 1.26 is valid not
only for a single point source but for any gravitational potential arising from a matter
distribution at the lens plane.

1.4.2 Effective lensing potential

It is useful to define the effective lensing potential as a projection of the three-dimensional
Newtonian potential of the lenses

 (✓,�) =
2

c2

Z �

0

�� �0

��0 �(✓,�
0
) d�0, (1.27)

since then the scaled deflection is equal to its gradient in the plane of the sky

↵(�) = r✓ (✓,�). (1.28)

Equation 1.27 is valid for an extended three-dimensional distribution of matter, that is, it
accounts for the distortions induced by all lenses at any distance between the source and
the observer. However, it assumes the Born approximation, in which integrals over the
line-of-sight are computed along the unperturbed path ✓ in �. This is accurate in most
cosmological situations, since the deflection angle is typically small and we shall assume
it hereafter.

1.4.3 Surface mass density

Next we define the convergence for a single lens plane (having a comoving width of��)
as a dimensionless surface mass density

(✓,�) =
⌃(✓,�)

⌃cr(�)
, (1.29)

where

⌃(✓,�) = ⇢(✓,�)�� ⌃cr(�) =
c2

4⇡G

�

�l(�� �l)
. (1.30)
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It is more convenient to convert the density in the last equation to the density contrast
� ⌘ ⇢/⇢̄� 1, where ⇢̄ = ⌦o⇢c = ⌦03H

2
0/8⇡G. Integrating all the lenses along the line-of-sight

in the Born approximation, the convergence is

(✓,�) =
3H2

0⌦m

2c2

Z �

0
�(✓,�0

)

(�� �0
)�0

a�
d�0 . (1.31)

1.4.4 Linearized lensing quantities

At linear order, the mapping from image to source coordinates is given by the Jacobian
matrix of the transformation

Aij =
@�i
@✓j

= �ij � @↵i

@✓j
= �ij � @i@j =

 
1� � �1 ��2

��2 1� + �1

!
(1.32)

where the above equalities use the lens equation 1.25 and equation 1.28. The last equality
introduces the convergence and shear as second derivatives of the potential

 =

1

2

� (1.33)

�1 =
1

2

(@1@1 � @2@2) �2 = @1@2 . (1.34)

Note that the first expression is the equivalent of the Poison equation in two dimensions.
Convergence is a scalar that causes isotropic distortions, while the shear is a spin-2 tensor
that deforms circles into ellipses. The latter can be expressed as a complex number: � =

�1+i�2 = |�|e2i�. In the case of galaxy surveys, the effect of the convergence is a variation
of the sizes of objects, while the shear distorts the intrinsic ellipticity e of a galaxy into
a measured one of e + �. Furthermore, since surface brightness is conserved in weak
lensing, there is a magnification effect that modifies the observed brightness by a factor
µ = [detA]�1

= ((1�2)� |�|2)�1, that is due to the change in apparent area of the lensed
object.
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2
GALAXY AND HALO MOCK CAT-
ALOGUES

Our conception of the Universe has changed considerably in the last decades thanks to
observational cosmology. The ⇤CDM model (see § 1.1) successfully explains most of the
handful of observations available, but there are still unresolved puzzles such as the com-
ponents of the dark sector. Ongoing surveys sample volumes one order of magnitude
larger than what used to be one decade ago, and next generation of experiments will in-
crease one order of magnitude further. It is said that we are entering the era of precision
cosmology, in which new experiments will provide measurements with error-bars within
the percent level.

Such tremendous narrowing of the statistical errors has to go along with an equivalent
reduction of the systematics, otherwise the final error-bars on cosmological parameter
will not scale down accordingly. A good theoretical modelling is essential to predict the
signal that will be observed. Furthermore, in order to place constraints on cosmological
parameters it is required to have accurate predictions for covariance matrices. Analytical
prescriptions are unable to model the non-linear evolution (see § 1.3.2) and numerical
simulations become an invaluable tool, which allow to follow the growth of structure
formation down to very small scales. Besides, mock galaxy catalogues can be produced
from them and used to develop the science cases of future surveys. Mock catalogues are
essential for the analysis of complex and huge astronomical datasets because they allow
to optimize the pipelines, model and mitigate systematic effects, calibrate algorithms, test
new techniques, etc.

However, conventional N -body codes are challenged by the requirement of sampling
increasingly larger cosmological volumes while still resolving with very fine detail small
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scales. This translates into very large simulations, including billions of particles, what in
turn demands millions of CPU-hours to develop in current high performance computing
platforms. Besides, an accurate estimation of covariance matrices demands the devel-
opment of massive ensembles of simulations. For these many reasons, nowadays there
is a growing interest in the so-called approximate methods, that overcome the problem
of explicitly solving the non-linear evolution by incorporating a smart modelling of the
small-scale physics, at a much lower computational cost.

This chapter begins in § 2.1 with an overview of large-scale structure simulations by
means of the common N -body method. Through the thesis, a particular simulation is
taken as the fiducial value to benchmark results. It is the Marenostrum Institut de Cièn-
cies de l’Espai-Grand Challenge simulation (hereafter MICE-GC) a state-of-the-art cos-
mological simulation (Fosalba et al., 2015a; Crocce et al., 2015; Fosalba et al., 2015b).
Next, § 2.2 summarizes the existing approximate methods to produce mock catalogues.
A very promising method among them, COLA, in which this thesis has been based, is in-
troduced in § 2.3. Lastly, § 2.4 summarizes all the simulations that have been developed
for this thesis.

2.1 N -body simulations of the large-scale structure

Cosmological simulations solve the evolution of a self-gravitating system within an ex-
panding volume (for reviews, see Binney et al., 1987; Bertschinger, 1998; Dehnen et al.,
2011). The expansion can be scaled out of the dynamics of the system and becomes ir-
relevant in the numerics. The problem is how forces are computed and integrated in
time. Hydrodynamical simulations also account for friction forces due to collision terms
in the right hand side of the Boltzmann equation 2.2 from the baryon component, which
modifies the dynamics at cluster scales. But those demand much more computational
resources and baryons can be neglected on large enough scales (of few Megaparsecs).
Therefore, it is common to assume a dark-matter only system that is governed just by
gravitational interactions.

A gravitational system that is affected by long-range interactions in which close en-
counters are inefficient for re-distributing kinetic energy is called collissionless. In that
situation relaxation is not important, where the time needed to achieve relaxation in a
system can be estimated as

trelax ' N

8 ln⇤

tcross, (2.1)

where N is the number of particles, tcross is the crossing time (the time required to cross
the radius of the object at the typical velocity), and ln⇤ = ln(bmax/bmin) is called the
Coulomb Logarithm, which depends on the maximum and minimum impact parameter
of the system1. for large N (as in N -body systems), the relaxation time becomes arbitrar-
ily large.

1For a system of point particles, the minimum impact parameter is bmin = Gm/ < v2 >, where m is the
mass of a single particle (S. D. M. White, 1976a).
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The process of large-scale structure formation follows a collisionless evolution and,
in fact, most of the haloes have a low relaxation level. The evolution of the density field
in phase-space, f(x, ˙x, t), is given by the collisionless Boltzmann equation

df

dt
=

@f

@t
+

˙

x · @f
@x

+

✓
@�

@x

◆
· @f
@ ˙

x

= 0 (2.2)

together with the Poisson equation 1.17. The N -body method consists on sampling the
phase space discretely with point-like particles that move within the simulated volume.
This introduces Poisson noise due to the finite sampling, but is less computational inten-
sive that solving the system in the six-dimensional phase space (although attempts have
been made in that direction, e.g. Hahn et al., 2016). The evolution is solved by computing
the force field and integrating discretely the equations of motion for particles in repeated
time steps.

There are many N -body algorithms and differences are found mainly in how forces
are computed. The gravitational potential of a collection of particle has the following
expression

�(r) = �G
NX

i=1

mi

[(r � ri)
2
+ ✏2]1/2

, (2.3)

where ✏ is the softening length, that it is necessary to suppress close pair encounters,
where the potential would diverge. A direct summation approach (Peebles, 1970; S. D. M.
White, 1976b; Efstathiou et al., 1981; Aarseth et al., 1979) means that this expression (or
the analogue for the forces) is evaluated at each particle position in order to compute their
forces, which results in a problem that scales as O(N2

), with N being the number of par-
ticles. This becomes prohibitive to compute as soon as there are few thousands particles
in the simulation. For that reason, many numerical techniques have emerged that scale
roughly as O(N log(N)). There are a collection of algorithms that are based on interpo-
lating the particle distribution (or rather its density) to a grid, such as the Particle-Mesh
(PM see § 2.3.1), the Particle-Particle Particle-Mesh (P3M, Hockney et al., 1988; Efstathiou
et al., 1985; Couchman, 1991). They use Fourier transforms in a cartesian grid to compute
long-range interactions and in some cases are complemented with a direct summation
at short distances. More sophisticated are multi-grid techniques such as the Adaptive
Mesh Refinment (AMR), that adjust the resolution at each region of space depending
on its dynamical state (Teyssier, 2002). On the other hand, the Tree algorithm computes
forces by grouping particles that are close (Appel, 1985; Stadel, 2001). A successful model
has been combining both the PM and the tree algorithms in a hybrid scheme to compute
long- and short-range forces, as is the case of the Gadget code (Springel, 2005), which was
used to develop the MICE-GC simulation (see § 2.1.1). Thanks to the improved software
algorithms and the usage of the state-of-the-art hardware infrastructures, over the past
years many large simulations have been developed with more than 10

10 particles (Kim
et al., 2011; Angulo et al., 2012; Alimi et al., 2012; Habib et al., 2012; Skillman et al., 2014;
Heitmann et al., 2014; Fosalba et al., 2015a; for a review see Kuhlen et al., 2012).
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2.1.1 The MICE-GC simulation

The Marenostrum Institut de Ciències de l’Espai-Grand Challenge (MICE-GC)2 is a state-
of-the-art N -body simulation. This thesis uses it to benchmark results obtained from the
approximate method COLA and next is described briefly.

MICE-GC evolved 4096

3 particles in a volume of (3072h�1
Mpc)

3 using the GADGET-
2 code (Springel, 2005) assuming a flat ⇤CDM cosmology with ⌦m = 0.25, ⌦⇤ = 0.75,
⌦b = 0.044, ns = 0.95, �8 = 0.8 and h = 0.7, that is consistent with the best fit to WMAP
5-year data (Dunkley et al., 2009). This results in a particle mass of 2.93 ⇥ 10

10 h�1
M�.

The initial conditions were generated at zi = 100 using the Zel’dovich approximation
(Zel’dovich, 1970) and a linear power spectrum generated with CAMB3.

This simulation and its products have been extensively validated. The dark-matter
and halo outputs are described in Fosalba et al., 2015a and Crocce et al., 2015. In addi-
tion, lensing maps are described in Fosalba et al., 2015b while Carretero et al., 2015 and
Hoffmann et al., 2015 detail the HOD implementation used to produce galaxies mocks
and the higher-order clustering, respectively.

The work in this thesis uses dark matter and halo catalogues of comoving outputs at
z = 0, 0.5, 1.0 and 1.5. Haloes were identified using a Friends-of-Friends (FoF) algorithm
(Davis et al., 1985) with a linking length of 0.2 (in units of the mean particle separation).

It is known that long-lived transients from the initial conditions affect the abundance
of massive haloes and the clustering towards small scales, even for high starting redshifts
if the Zel’dovich approximation is used (Scoccimarro, 1998). To investigate and correct
such effects, an additional set of dedicated GADGET-2 N -body simulations were run. This
is discussed in Appendix A for comoving catalogues. Results in Chapter 3 take into
account these corrections, which are . 2% for 2-point matter clustering and 2 � 5% for
halo abundance on the regime and redshifts of interest. The results showed that transient
effects are below the 1 per cent level for halo clustering, so the correction was safely
neglected for these measurements.

2.2 Approximate methods for producing mock catalogues

Approximate methods are becoming a key tool in the observational cosmology commu-
nity, as outlined in the introduction of this chapter (for a recent review of the theoretical
foundations, history and a comparison of all the recent methods see Monaco, 2016). Most
of them have in common that small-scale physics are unresolved (which represent the
most expensive computations in an ordinary N -body simulation, thereby the speed-up),
but this lack of information is supplied by introducing a motivated theoretical modelling.
This is possible because non-linearities are restricted basically within haloes and, once
these have collapsed, they display a more or less uniform profile. Their spatial distri-
bution is connected with the large-scale density field (see § 1.3.3), and a simple biasing
prescription might be able to predict one distribution from the other.

2More information is available at http://www.ice.cat/mice.
3http://camb.info

http://www.ice.cat/mice
http://camb.info
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Instead, COLA is a quasi N -body that solves approximately the dynamics at small
scales and incorporates a modelling that assures recovering the correct evolution at large
and linear scales. The internal halo sub-structure is not accurately resolved, although it
is capable of reliably predicting halo mean properties.

A convenient approach to reproduce the observed galaxy distribution on large scales
is to populate dark matter haloes with galaxies using either Semi-Analytic Models or
techniques relying on the Halo model, such as the Halo Occupation distribution or the
Sub-halo Abundance Matching (see Knebe et al., 2015, and references therein for a com-
parison of models). Some of these techniques do not need to fully capture internal halo
substructure since they only use reliable positions and mass estimates for haloes, which
can be accurately predicted by approximate methods. A simplified and cheaper evolu-
tion of the density field is enough to approximately predict the abundance and clustering
of collapsed regions to build halo mock catalogues. Available methods that are based on
this idea include: PINOCCHIO (PINpointing Orbit-Crossing Collapsed HIerarchical Ob-
jects, Monaco et al., 2002; Monaco et al., 2013; Munari et al., 2016), PThaloes (Scoccimarro
et al., 2002; Manera et al., 2015) and recently COLA (COmoving Lagrangian Acceleration,
Tassev et al., 2013; Tassev et al., 2015).

An alternative approach is to use prescriptions to assign haloes in a density field pro-
duced by a simple gravity solver. This is the case of the log-normal model (Coles et al.,
1991), QPM (Quick Particle Mesh, M. White et al., 2014), PATCHY (PerturbAtion Theory
Catalog generator of Halo and galaxY distributions, Kitaura et al., 2015), EZmocks (ef-
fective Zel’dovich approximation mock catalogues, Chuang et al., 2015), and HALOGEN
(Avila et al., 2015). Thus these methods constitute a more direct modelling for the galaxy
distribution. The drawback is that they contain many internal parameters describing
properties such as the galaxy clustering and abundance that have to be fit in order to
correctly reproduce observations. COLA (see § 2.3) can be categorized as a quasi-N -body
method and therefore has higher computational requirements than other methodologies.
But it has no internal parameters to tweak beyond a generic optimization of code pa-
rameters to trade speed versus accuracy. It is more predictive and yields accurate high
order clustering statistics. This has motivated the development of ICE-COLA, to extend
its capabilities to light cone catalogues and to the modelling of weak lensing.

2.3 The COLA method

COmoving Lagrangian Acceleration (COLA, Tassev et al., 2013; Tassev et al., 2015), is a
novel method for producing fast and approximate N-body simulations for large-scale
structure formation of the Universe. A perturbative approach is used to obtain a first
approximate solution to the dynamics, which serve as the basis for solving easily a more
accurate solution though a simplified numerical integration.

A common feature in most of the approximate methods is that they evolve mass par-
ticles using Lagrangian Perturbation Theory (LPT). COLA is unique because on top of
the analytical trajectory it adds a residual displacement computed by an N -body solver.
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Equations of motion are solved in a frame comoving with LPT observers which, at a
given perturbative order, encodes more non-linear growth information than the corre-
sponding Eulerian approach. This guarantees an accurate description of the dynamics
on large scales where the evolution is quasi-linear. The numerical evolution is simplified
with respect to full N -body codes, making use of a fine Particle-Mesh (PM) algorithm
(see § 2.3.1), and evaluating forces for a few (i.e, order of ten) time steps. Haloes can then
be identified running a group finder in the evolved dark matter particle distribution, in
the same way that it is done for an N -body.

The method decomposes the displacement field x into two terms: xLPT describes the
LPT trajectory (see equation 1.21) and xres is the residual displacement with respect to
the LPT path

xres(t) ⌘ x(t)� xLPT(t). (2.4)

The equation of motion in a pure gravitational simulation relates the acceleration to the
Newtonian potential �: @2

t x(t) = �r�(t). Therefore, equation 2.4 can be rewritten as

@2
t xres(t) = �r�(t)� @2

t xLPT(t), (2.5)

where � is evaluated at the Eulerian position x = x + q (see § 1.3.1) by the PM algo-
rithm, that solves the Poisson equation 1.17. COLA discretizes the time derivatives only
on the left-hand side (see § 2.3.2), while uses the LPT expression at the right-hand side
(see § 2.3.1). More recently, Tassev et al., 2015 extended this reformulation to the Eule-
rian domain, which allow the simulation of a sub-volume embedded in a larger effective
simulation box.

COLA takes the advantage that the LPT displacement field is already computed at the
beginning of a simulation when setting the initial conditions. Instead of dropping it, it
is kept during the whole run time and simply re-scaled by the growth factors in order to
integrate the equations of motion (see § 2.3.2).

2.3.1 The Particle-Mesh method

In the PM method, the density is estimated in a cartesian grid from the particle positions
with a mass assignment function (see Hockney et al., 1988). Then, the Poisson equation
1.17 is solved in Fourier space, where derivatives become simple multiplications

k

2
˜�(k) = 4⇡G⇢̃(k). (2.6)

Forces are then computed from the potential and are interpolated from the grid nodes to
the position of the particles.

The method uses Fast Fourier Transform (FFT) in two steps: just before and after
solving the Poisson equation. Indeed, this represents the most expensive part of the
method. Another consequence of this is that it results in assuming periodic boundary
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conditions. Simulations can take advantage of this and build box replicas in adjacent
positions (see § 4.2.2).

The cell size of the mesh determines the spatial resolution of the simulation. Tassev et
al. (2013) suggest to use a mesh in COLA that is finer than the mean inter-particle distance.
We shall refer to this scaled distance as the PMgrid factor, which these authors suggest to
set to ⇠ 3 in order to adequately resolve small-mass haloes. Hence, in total there are 3

3

more mesh cells than particles (the total number of cells is thus the number particles ⇥
PM

3
grid).

2.3.2 Temporal Drift and Kick operators

Once forces have been computed with the PM method (see § 2.3.1), the leapfrog inte-
grator is used to solve the equation of motion of particles. It is a second order method
that alternates the so-called drift (D) and kick (K) operators, that update positions and
velocities respectively. In its standard form, these operators are:

D(ai, ai+1) : s(ai) 7! s(ai+1) = s(ai) + v(ai+1/2)�t (2.7)

K(ai+1/2, ai+3/2) : v(ai+1/2) 7! v(ai+3/2) = v(ai+1/2) +
1

2

(�r�(ai+1))�t. (2.8)

In COLA, the operators are re-written, separating the contribution coming from LPT and
the numerical integration (the residual component). Velocities contain only the residual
component and are updated with the residual acceleration, while positions are found
integrating these velocities and adding the LPT displacement:

D(ai, ai+1) : s(ai) 7! s(ai+1) = s(ai) + v(ai+1/2)�t (2.9)

+ [D1(ai+1)�D1(ai)]s1 + [D2(ai+1)�D2(ai)]s2

K(ai+1/2, ai+3/2) : v(ai+1/2) 7! v(ai+3/2) = v(ai+1/2) +�t⇥ (2.10)
✓
�1

2

r�(ai+1)� @2
t s1(t)� @2

t s2(t)

◆
.

Then, the evolution of n time steps can be written as

L+(a)

 
nY

i=0

K(ai+ 1
2
, ai+ 3

2
)D(ai, ai+1)

!
K(ai, ai+ 1

2
)L�(a). (2.11)

In this notation, the rightmost operator applies first. Note that at the beginning it is
necessary to perform a kick of half time step. Before this, it is necessary to transform the
initial conditions to the rest frame of LPT observers (where the residual velocity is zero
at the start) and add it back at the end of the simulation to re-write the solution for a
comoving Euler-space observer with the operators

L±(a) : v(a) 7! v(a) = v(a)± (@ts1(t) + @ts2(t)) . (2.12)
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The procedure is fully described in the appendix A of Tassev et al., 2013, where it
is also explained how COLA uses a modified discretization for integrating the temporal
intervals, which is based on assuming an ansatz for the time dependence of the residual
velocities.

2.3.3 The Parallel COLA code

Koda et al., 2015 developed a parallel version of COLA, suitable for the massive produc-
tion of mock catalogues, which was used for modelling the BAO signal in the WiggleZ
survey (Kazin et al., 2014). The code is named Parallel COLA and it is publicly avail-
able4. FFT’s are computed by the Fastest Fourier Transform in the West (FFTW) package5

in its Message Passing Interface (MPI)6 version for distributed memory parallelization.
Interpolations in the PM algorithm (see § 2.3.1) use the Cloud-in-Cell linear interpolation
(Hockney et al., 1988). It includes both the generation of random Gaussian initial con-
ditions using 2LPT (Crocce et al., 2006) and the Friends-of-Friends (FoF, see also § 4.3.3)
halo finder (Davis et al., 1985) running on-the-fly (for comoving outputs).

ICE-COLA (Institut de Ciències de l’Espai-COmoving Lagrangian Acceleration), the
simulation code presented in this thesis, is based on Parallel COLA. They differ in the
new features that have been added to the former such as using arbitrary time stepping
distributions, the generation of matter power spectra on-the-fly, the storage of halo cat-
alogues in binary format and the parallel storage of the comoving matter density field
interpolated onto large mesh grids using the Cloud-in-Cell assignment (it has been used
with grids up to 1024

3 cells). But the main novelty is the implementation of the algorithm
to generate many flavours of light cone catalogues on-the-fly, as it is described in Chap-
ter 4 and validated in Chapters 5 and 6. These include two compressed data formats: the
two-dimensional projected matter field in several concentric pixelated maps (see § 4.3.2)
and halo catalogues (see § 4.3.3).

Recently, other groups have produced other parallel implementations. L-PICOLA7

(see Howlett et al., 2015a) is similar to Parallel COLA in its technical details and has
been used to generate mock galaxy catalogues for the SDSS-II Main Galaxy Sample (Ross
et al., 2015; Howlett et al., 2015b). This group advocate for low values for PMgrid. It is also
capable of producing light cone data, but as far as we know they seem to be restricted
to the three-dimensional particle distribution, that demand huge disk storage and an
intensive post-processing. FAST-PM8 (see Feng et al., 2016) is a parallel PM code that
includes the COLA method as an option. It uses a distinct library for performing FFT’s:
the Parallel FFT (PFFT)9, that has the advantage of using a two-dimensional domain de-
composition. This allows a good scalability of the code to thousands of cores. Finally,

4https://github.com/junkoda/cola_halo
5http://www.fftw.org/
6https://www.mpi-forum.org/
7https://cullanhowlett.github.io/l-picola/
8https://github.com/rainwoodman/fastpm
9https://github.com/mpip/pfft

https://github.com/junkoda/cola_halo
http://www.fftw.org/
https://www.mpi-forum.org/
https://cullanhowlett.github.io/l-picola/
https://github.com/rainwoodman/fastpm
https://github.com/mpip/pfft
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there is a multi-threaded code written in Python/Cython10 dubbed pyCOLA written by
the original authors of the COLA method that implements both the temporal and spatial
domain decoupling of the dynamics (as explained in Tassev et al., 2013; Tassev et al., 2015
respectively).

2.4 Simulation developed for this thesis

A large suite of simulations has been produced for this thesis. Although the method is
faster in terms of wall-clock time when compared to full resolution N -body simulations,
it still requires large dedicated memory. Subsections below describe the simulation sets
that were used in different chapters of this thesis. Most of them have some common
characteristics that are explained next and are assumed, unless stated differently.

The simulation code used was ICE-COLA. The cosmological model, the input linear
power spectrum and the particle mass are identical as MICE-GC (see § 2.1.1, with some
exceptions in the latter for exploring mass resolution effects). The fiducial set of runs
contain 2048

3 particles in a box size of 1536h�1
Mpc, that is, a factor 8 smaller volume

than MICE-GC. It provides nonetheless a very large cosmological volume. The default
configuration assumes PMgrid = 3, 40 time steps and a distribution of these linear in
the scale factor starting at redshift zi = 19. A typical run without light cone outputs
(the performance of these is discussed in § 4.4) uses 1024 cores, with maximum memory
consumptions of 2.6 TB for PMgrid = 3 and takes around 40 minutes wall-clock time
for 40 time steps. This means that the CPU-time consumed is less than 1 khour, to be
compared with the 3 Mhours that needed MICE-GC having 8 times more particles, which
gives a speed-up factor between two and three orders of magnitude with respect to a full
N -body simulation with the same number of particles.

2.4.1 Simulations for Chapter 3

The results presented in Chapter 3 were derived from comoving outputs of a set of
ICE-COLA simulations whose code parameters are listed in Table 2.1. Parameters that
were varied are: the PMgrid factor, the number of time steps, the time sampling and the
initial redshift. Additionally, it was explored the effect of decreasing the mass resolution
by reducing the number of particles while keeping the box size fixed. Or in the oppo-
site direction, the box size was reduced while keeping constant the particle load for a
better mass resolution. For some particular runs of interest additional realizations were
produced in order to reduce sampling variance.

All runs use the same seed number for the generation of the initial conditions (except
for those which add more realizations to the same parameter configuration), what can-
cels out cosmic variance between different simulations (but not with respect to MICE-GC,
which uses a different box size). The data products from those simulations are the fol-
lowing comoving ouputs: FoF halo catalogue, matter field interpolated in a 1024

3 mesh,
10http://cython.org/

http://cython.org/
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Nrealizations
Particle
number

Lbox PMgrid Nsteps zi

Time
steps
distribution

1 1024

3
1536 3 10 9 / a

1 1536

3
1536 3 10 9 / a

1 2048

3
1536 2 10 9 / a

2 2048

3
1536 3 10 9 / a

1 2048

3
1536 3 20 9 / a

1 2048

3
1536 3 40 9 / a

1 2048

3
1536 2 40 19 / a

48 2048

3
1536 3 40 19 / a

1 2048

3
768 3 40 19 / a

8 2048

3
1536 3 40 39 / a

1 2048

3
1536 3 40 39 / log a

1 2048

3
1536 3 40 39 / a0.8

1 2048

3
1536 3 40 100 / a

TABLE 2.1: ICE-COLA code parameters used in the simulations for Chapter 3. The box
sizes are in units of h�1

Mpc. Underlined are parameter values that are distinctive for
a run and the highlighted row corresponds to the optimal set-up, which provides the
best accuracy. For the latter, each realization needed 1024 cores during 40 minutes
and 2.6Tb of memory. How to extrapolate those computational requirements to other

parameter configurations is explained in § 3.1.
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and for some runs the matter power spectrum. The redshifts outputted were 0, 0.5, 1 and
in some cases also 1.5. This results in a typical data volume of 16 GB per run.

2.4.2 Light cone simulations

All the results from light cone simulations presented in this thesis (see Chapters 4, 5 and
6) derive from a single run using that new feature of ICE-COLA. This has already been
augmented to 68 realizations in total, that are being analysed for ongoing projects on
weak lensing covariance matrix estimation (as outlined in § 7.2), and it is foreseen that
more realizations will be produced in a future. The code parameters used are the fiducial
ones explained in § 2.4. An all-sky light cone was built starting at redshift zLC = 1.4,
which corresponds to a comoving distance two times larger than the box size (see equa-
tion 4.6). This generates 64 box replicas (see equation 4.7), i.e., two in each cartesian
direction. The outputs that were generated consist on FoF halo catalogues in the light
cone (for haloes with 20 or more particles, see § 4.3.3), pixelated two-dimensional pro-
jected matter density maps (see § 4.3.2) and the matter power spectrum at some selected
redshifts (0,0.5, 1, 1.5 and 2). The data volume generated for each realization is roughly
100 GB. For more technical details on the numerical performance of these simulations
with light cones, see § 4.4.

Besides, ten additional realizations were generated with only particle light cone cat-
alogues, with the same parameters as described before except that the volume was re-
stricted to one octant of the sky. These are being used to generate projected matter maps
at post-processing with different angular resolutions in order to asses its impact on weak
lensing observables.

2.4.3 Other simulations

As described on § 7.1, an on-going project consists on comparing covariance matrices
estimated from the approximate methods COLA and PINOCCHIO with respect to a set of
100 N -body simulations, dubbed Minerva. The suites from approximate methods consist
of 1000 realisations on a box of 1500h�1

Mpc with a ⇤CDM cosmology that matches the
best-fitting analysis of WMAP9 and the correlation function from BOSS DR9 (Sánchez
et al., 2013). COLA evolved 1536

3 particles while PINOCCHIO and Minerva 1000

3. The
outputs produced include FoF halo catalogues at redshifts 0, 0.57, 1, 2, and the matter
power spectrum at same redshifts. The total CPU-time needed was is 250 khrs. In addi-
tion, the set is completed with 100 extra realizations that use the same initial conditions
and number of particles than the Minerva simulations. These are useful to cancel out
cosmic variance. The latter required ten more khrs in total. These simulations produce
388 MB (92 MB) of output data per run for the ensembles of 1000 (100) realizations.

Besides, Appendix A and B use additional simulations to estimate transient effects
and the performance of PM-only simulations respectively. The details are described
there.
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3
OPTIMIZATION OF A QUASI N -
BODY METHOD FOR CLUSTER-
ING

COLA is able to accurately determine the evolution of the matter field on scales above the
typical size of dark matter haloes. However, reproducing the birth and growth of haloes
is more challenging because they display high density contrasts and non-linear dynamics
sustained by virialisation. Halo formation is very sensitive to the degree of approxima-
tion in the dynamics at small scales and a minimum accuracy is indispensable to generate
reliable halo mock catalogues. Therefore, it is essential to assess the performance of the
method under different values of the internal code parameters that describe the spatial
and temporal discretization of the gravitational evolution.

This chapter uses a suite of large ICE-COLA simulations with comoving outputs, de-
scribed in § 2.4.1, and the N -body simulation MICE-GC as a reference (see § 2.1.1, for an
extensive validation see Fosalba et al., 2015a; Crocce et al., 2015; Fosalba et al., 2015b).
We summarize the scaling of computational requirements of Parallel COLA in § 3.1
and we explain the details for measuring observables in § 3.2. In § 3.3 we discuss the
capabilities and limitations of COLA when run with as few as 10 time steps and § 3.4 ex-
plores the impact of varying internal code parameters on basic observables such as the
matter real-space power spectrum and the halo mass function. In particular the param-
eters explored are: the size of the force evaluation mesh, the number and distribution
of time steps, and the initial redshift, in combination with mass resolution. The optimal
code set-up is described in § 3.4.5, showing that it yields the best accuracy in the power
spectrum and the mass function (for a wide range of halo masses, comoving scales and
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redshifts) without a large increase in computational cost. Next in § 3.5 we discuss the per-
formance of the optimal parameter choice on halo clustering in real and redshift space.
This procedure yields what can be regarded as the optimal accuracy of the code out of the
box. To improve it further one needs to rely on simple corrections to halo masses using
an external simulation, as it is shown in § 3.5.1 by matching the halo abundance and in
§ 3.5.2 by matching the halo clustering amplitude on large scales. In that way, deviations
in halo clustering can be reduced to within the percent level in most situations. Besides,
Appendix A shows how transient effects have been corrected in the simulations and Ap-
pendix B demonstrates the advantage of COLA over a PM-only simulation when there are
as many as 40 time steps.

Finally, § 3.6 gives a comparison of the performance of COLA against other approxi-
mate methods in the literature.

The work of this chapter resulted to the following publication (Izard et al., 2016):
Towards fast and accurate synthetic galaxy catalogues optimizing a quasi N -body

method, Izard A., Crocce M., and Fosalba P., 2016, MNRAS, 459, 2327–2341, arXiv:
1509.04685.

3.1 Computational requirements and their scaling

This section explains how the run-time and memory consumption of a single COLA real-
ization scale with code parameters, so that combined with the information provided in
§ 2.4.1 for the suite of simulations used one can extrapolate the numbers to other config-
urations.

The choice of the initial redshift and the time sampling distribution have no effects at
all on the computational requirements. The run-time is largely dominated by the compu-
tations of FFTs during force evaluation at each step. For the default configuration and 40
time steps, the code spends only 10 per cent of the time in computations not related to the
PM algorithm, such as the initial set up and I/O. For this reason, the run-time increases
roughly linearly with the size of the FFT and the number of time steps. Such transforms
scale as / O(n log n), where n is the number of grid points, and since this is proportional
to PM

3
grid, the run-time scales roughly as / PM

3
grid (for large numbers the log n factor can

be neglected).
On the other hand, given a constant number of particles, the memory consumption

depends only on the size of the force mesh. The allocation of memory from the PM part
represents around 60 per cent for PMgrid = 3 and it scales as PM3

grid.

3.2 Power spectrum and mass function measurements

The matter and halo power spectra are determined interpolating the particles into a cubic
grid of 10243 cells via a Cloud-in-Cell (CiC) assignment. We then obtain the density in
k-space by doing a FFT and estimate the band power by averaging the square over the
range of modes corresponding to a k-bin: P (k) = h|�

k

|2i. The mass assignment into

http://arxiv.org/abs/1509.04685
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Sample Mass range [log(M/h�1
M�)]

M1 12.5� 13.0
M2 13.0� 13.5
M3 � 13.5

TABLE 3.1: Halo mass samples used throughout this chapter, defined by halo mass, at
z = 0, 0.5 and 1.

a finite size grid introduces a filtering artifact that we compensate by deconvolving the
CiC window function, which in Fourier space is simply a division. We correct for aliasing
effects due to the finite sampling as in Jing (2005). Lastly, monopole measurements of
halo power spectrum are corrected for shot-noise assuming a Poisson distributed noise.

For haloes, we restrict the analysis to those having more than 100 particles, corre-
sponding to M � 10

12.5 h�1
M� for most of the runs. Halo masses are defined using the

Warren correction (Warren et al., 2006): M = mpN(1 � N�0.6
), where mp is the particle

mass and N the number of particles. This is irrelevant for most of the runs that use the
same mass resolution as MICE-GC, but provides better agreement for lower mass reso-
lution runs. We build three halo samples according to the mass cuts listed in Table 3.1.
Mass function measurements contain error bars estimated by Jack-knife re-sampling us-
ing 64 different cubic sub-volumes and only mass-bins whose relative error is less than
5% are shown (see e.g. Fig. 3.1).

3.3 Limitations of 10 time steps

The COLAmethod is designed to use very few time-steps, so that a high speed-up of more
than two orders of magnitude with respect to a full N -body is achieved (Tassev et al.,
2015). In this section we explicitly test the accuracy, as a function of scale and redshifts,
of the original COLA configuration of 10 time steps with scale factor linearly distributed
between redshift 9 and 0 and a PMgrid factor of 3.

With only 10 time steps, the matter power spectrum is accurate at the 5% level to
k ⇠ 0.5hMpc

�1 (see § 3.4.1). This allows the exploration of non-linear scales, but only to
some limited extent. At the halo level, however, the situation is more complex. Figure
3.1 shows that the mass function is severely underestimated at z = 1, especially at large
masses. The problem is not so visible at z = 0.5, where the disagreement is at most at
the 15% level and at z = 0 it is within the 5% for all masses. Likewise, we have checked
that the halo bias is overestimated by as much as 20% at z = 1 and agrees within few
percent level at lower redshifts. Both effects (underestimation of the mass function and
overestimation of the halo bias) can be explained by a halo mass underestimation at high
redshift, when the evolution has been computed with very few time steps.

We suggest that these problems could come from a higher difficulty of achieving re-
laxation inside haloes when the time discretization is too coarse. Particles evolve accord-
ing to the mean gravitational potential that arises from the smooth distribution, but are
also affected by individual encounters. The relaxation time is related to the moment when
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FIGURE 3.1: Mass function when using COLA with 10 time steps starting at z
i

= 9.
Solid, dashed and dotted lines correspond to z = 0, 0.5 and 1 respectively. At high

redshift there is a large discrepancy that is partially solved at z = 0.5.

the latter start to significantly contribute to the dynamics, boosting the re-distribution of
kinetic energy and achieving a dynamical equilibrium in the system (Dehnen et al., 2011).

Each time step is a chance for particles to interact with each other, but if we reduce
them drastically the re-distribution of energy is unphysical suppressed. This is critical
for those haloes that have not relaxed yet. Since the relaxation time is proportional to
the number of particles of a halo (Binney et al., 1987), the effect is larger for high mass
haloes. The halo formation time increases and merging processes are poorly captured,
producing halo masses largely underestimated for z > 0, before 10 time steps have been
completed. Note that full N -body codes with adaptive time steps schemes trigger finer
time samplings at high density regions and halo formation is properly tracked.

To visually confirm this idea, we show in Fig. 3.2 the halo distribution of two runs
with 10 and 40 time steps in red open and blue filled circles, respectively. The initial
conditions and the rest of parameters are kept the same, so that differences are due only to
the number of time steps. In the left panel, we confirm that at z = 1.0 massive haloes are
in general not properly tracked with 10 time steps and they seem to appear fragmented
as smaller mass haloes. And not all of the low mass haloes are identified. Nevertheless, in
the right panel at z = 0, when 10 time steps have been completed, the agreement is much
better on halo masses, positions and abundance at all masses. This visual inspection
suggests that one needs & 10 time steps before halo properties converge at the redshift of
interest.

We find that relaxation effects when only 10 time steps are used can be reduced using
a higher particle mass (e.g. above 10

11 h�1
M�). The number of particles of the haloes

decreases and, therefore, their relaxation time as well. We checked that disagreements in
the mass function and halo clustering are indeed lower, but this apparent improvement
is however lost for other statistics where mass resolution is important.

Evolving particles with just ten time steps before the redshift of interest, therefore,



3.4. Optimization 31

FIGURE 3.2: Spatial distribution of haloes in two different COLA runs that differ only
in the number of time steps: 10 are represented by open circles and 40 by filled ones.
Different panels show redshifts 1.0, 0.5 and 0 from left to right. The slices have a width
of 50h�1

Mpc and are 25h�1
Mpc thick. The radii of circles are proportional to M1/3

and match the r200 values, so that they reflect the physical size of haloes. Only those
with more than 200 particles are shown (which corresponds to 6 ⇥ 10

12 h�1
M�). The

largest halo at z = 0 has a mass of 1.87⇥ 10

15 h�1
M� for a run with 40 time steps and

a 4.5% less for 10 time steps. At z = 1 the matching between the runs is poor, with
the abundance under-estimated by 50% or more with 10 time-steps. The agreement

improves as one approaches z = 0.

provides accurate results only at large scales (k  0.3hMpc

�1) and low redshifts. We
might have stronger requirements that clearly push to go beyond 10 time steps to surpass
these limitations.

3.4 Optimization

A gravity solver algorithm discretizes both temporal and spatial dimensions (and the
mass as well) in order to numerically solve for the dynamical evolution. The idea behind
COLA is to reduce numerical computations as much as possible while still capturing the
growth of structure on large scales (see § 2.3). This can be controlled with few internal
code parameters: the number of time steps, the time sampling distribution, the initial
redshift and the size of the force mesh grid, in combination with the mass resolution
and/or the box size. Note however that COLA is not fundamentally different from a
full N -body in the sense that as one increases the requirements on such parameters the
numerical integration of particle trajectories becomes more accurate and COLA would
eventually converge to a full N -body.

In this section we explore the code parameter space in order to understand their im-
pact on observables and determine regions that provide optimal results in terms of accu-
racy versus running time (or memory usage). We assess the performance by comparing
the COLA dark matter power spectra up to k ⇠ 1hMpc

�1, and halo mass functions for
M & 10

12.5 h�1
M�, against those in the reference N -body run. A key difference from

previous works (Kazin et al., 2014; Howlett et al., 2015b; Leclercq et al., 2015) is that
we aim at reproducing those observables simultaneously across a large redshift range
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FIGURE 3.3: Matter power spectrum in real space at z = 0 (left panel) and mass func-
tion at z = 1.0 (right panel) for three different choices for the number of time steps: 10,
20 and 40 in dotted, dashed and solid lines, respectively. The initial redshift is fixed
at z

i

= 9. An increase in the number of time steps directly translates into a better
accuracy at small scales. As for haloes, a high number of time steps is necessary to

correctly predict the mass function at high redshift.

(0  z  1). As we will see next, the requirements in this case are more stringent that
those needed for a single redshift output or halo mass bin.

3.4.1 Number of time steps

The first parameter we vary is the number of time steps, with the initial redshift fixed
to 9. The upper panel of Fig. 3.3 displays the z = 0 matter power spectrum for COLA
runs with increasing number of time steps divided by the one measured in MICE-GC.
The characteristic scale at which the ratio deviates from unity is progressively shifted
towards higher wave-numbers as more time steps are included: there is a 2 per cent
agreement up to scales of k ⇠ 0.4, 0.6 and 0.8hMpc

�1 for 10, 20 and 40 time steps respec-
tively. This can still be improved adjusting the initial redshift according to the number
of time steps (see § 3.4.3). In particular, we check that doubling the number of time steps
almost doubles the characteristic wavenumber where the power spectrum is significantly
underestimated. This in turn means that there is room for higher accuracies with more
than 40 time steps, although presumably the force mesh resolution would then soon be-
come a limiting factor. We also find that these results for the matter power spectrum are
to a good extent independent of the redshift analyzed.

However, for the mass function there is a higher sensitivity to the number of time
steps at high redshift. As shown in the right panel of Fig. 3.3, the large underestimation
of the mass function at z = 1 is solved by doubling the total number of time steps. With
20 time steps, 10 of them are computed before the redshift of interest. The abundance at
high masses further increases by ⇠ 5 per cent when moving from 20 to 40 time steps and
the mass function is consistent with the one from MICE-GC.

At redshift 0 and 0.5 the mass function also increases with the number of time steps
at masses above ⇠ 10

13.5 h�1
M�, although more moderately. Moving from 10 to 20 time
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steps, the mass function augments by 5 � 10% at the high mass range and from 20 to 40
by . 5%. At low masses, differences remain within 1 per cent for 20 and 40 time steps.
We conclude, therefore, that the low mass regime of the mass function converges for 20
time steps but that 40 are necessary for the most massive haloes. In Appendix B we show
that, even with as many steps as 20 or 40, the 2LPT contribution in the COLA method is
still key to achieve accurate results, as compared to PM only simulations.

3.4.2 Time sampling distribution

The scale factor a is the variable used to discretize the temporal variable in regular time
steps. For that, we can choose a time sampling function f(a) and distribute n steps in
intervals of constant width�f(a),

�f(a) =
f(af )� f(ai)

n� 1

, (3.1)

where ai is the initial scale factor and af ⌘ 1 the final. If the resulting �a << 1 then
�a ⇡ [f 0

(a)]�1
�f(a). For the linear case, we simply have f(a) = a and the step width

�a is constant. We can define the step density as the inverse of the step width: ⇢ ⌘ 1/�a.
Since �f(a) is constant, then ⇢ / f 0

(a).
In § 3.4.1 we showed for the linear case how increasing the step density (which in that

case is only set by the number of time-steps) improves the accuracy of the simulation, but
at the expense of a higher computational cost. In this section we explore which function f ,
and the corresponding step density ⇢ / f 0

(a), produce a step distribution that is balanced
in terms of accumulated errors over time. In Fig. 3.4 we show the step density for four
different choices of the time sampling function. We distribute 40 time steps between
zi = 39 and z = 0 using a linear (circles), logarithmic (squares) or power law function
f(a) = ap (diamonds and triangles for p = 0.5 and p = 0.8 respectively).

A logarithmic time sampling is useful in full N -body codes for global time steps that
affect all particles. But these algorithms in general refine the global time stepping as the
simulation evolves and also implement adaptive time stepping schemes for individual
particles that sample more accurately the time evolution when non-linearities start to
grow. In the implementation of COLA we are using there is no such refinement at late
times and we see in Fig. 3.4 that the logarithmic choice oversample the early evolution
of the particle distribution at the price of a low step density at later times. On the other
hand, the linear case has large relative variations on the scale factor during the first steps,
which might presumably lead to larger inaccuracies. For that reason we have considered
the power law function to sample intermediate situations if 0 < p < 1.

In Fig. 3.5 we compare the matter power spectrum for three time sampling functions:
linear, a0.8 and logarithmic in solid, dashed and dotted lines respectively. Upper and
lower panels correspond to redshifts 0 and 1 respectively. We see that any gain we might
have at high redshift by concentrating there more time steps is lost as soon as the step
density decreases later. This is evident for the logarithmic case, which has the lowest
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FIGURE 3.4: Step density (or the inverse of the step width) as a function of the scale
factor for different schemes of time sampling: linear (circles), logarithmic (squares)
and using a power of the scale factor, where for the latter we show two cases with ex-
ponents 0.5 (diamonds) and 0.8 (triangles). In all cases we distribute 40 steps between

z
i

= 39 and z = 0 and the markers are located at the position of each step.

FIGURE 3.5: Matter power spectrum for the following time sampling functions: linear
(solid line), a0.8 (dashed) and logarithmic (dotted). All runs contain 40 time steps
starting at z

i

= 39. The upper and lower panels show redshifts 0 and 1, respectively.
The case that performs better at all redshifts is the linear one.
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step density for z < 2. In particular, at z = 0 the power spectrum is close to that for
the case of 10 time steps linearly distributed (see dotted line in the upper panel of Fig.
3.3) and indeed they have a similar step density. The distribution of time steps using the
function a0.8 provides better results at high redshift, but falls below the linear distribution
for lower redshifts where it has a lower step density.

Therefore, an optimal distribution should have a step density without strong varia-
tions and we conclude from the measurements that the linear case offers the best global
performance at all redshifts. Although large relative variations on the scale factor during
the first steps could lead to inaccuracies, this is balanced by the fact that at early times the
dynamics is close to linear and can be well approximated by the 2LPT evolution. Hence
a better time sampling at the beginning is not as critical as for low-z. Since all these argu-
ments are built based on relative variations of the step density across time, the conclusions
are independent of the absolute number of time steps and the initial redshift. Therefore in the rest
of this chapter (and the thesis as well) we shall adopt a linear time-stepping distribution.

Lastly, we can use the concept of step density to frame the results from § 3.4.1 for the
abundance of haloes. We find that whenever the step density is low (⇢ . 20), the mass
function suffers an underestimation for masses above 10

13.5 h�1
M�.

3.4.3 Initial redshift

The optimal selection of the initial redshift is coupled with the number of time steps (but
it is independent of the time sampling distribution, as we have already shown).

A first guess we can do is to set the initial scale factor equal to the step width, which
for 10 time steps gives zi = 9 (Tassev et al., 2013). Starting later would introduce more
transient effects whereas doing it earlier would produce large relative variations in the
scale factor in the first time step, which seems not optimal. So there is not much room for
optimization using few time steps. Instead we now focus on the situation in which we
have 40 time steps.

Using the same rule as before we can estimate a good guess as zi = 39. In Fig. 3.6
we show the resulting matter power spectrum at z = 0 when the initial redshift is varied
from 9 to 100. A low value of zi = 9 yields transient effects at all wave-numbers with
an amplitude up to one per cent. The rest of cases are almost indistinguishable, only for
zi = 100 there is slightly less power at k ⇠ 1hMpc

�1. On the other hand, we detect
that the mass function is underestimated at low masses if the initial redshift is too high.
One possible explanation is that for high starting redshift the density contrast in the initial
conditions are too smooth and then, due to the coarse time sampling in COLA, the smallest
density peaks that seed small mass haloes are blurred. This pushes towards using an
initial redshift not as high so fluctuations are larger, even if they are given by 2nd order
in LPT.

Nonetheless the dependence we observe on this parameter once zi ⇠ 20� 40 is weak,
since in practice only affects the position of the first(s) time step. But given the slightly
better performance on the mass function of zi = 19 when using 40 time steps, we adopt
this value as our fiducial choice in what follows.
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FIGURE 3.6: Matter power spectrum at z = 0 as a function of the initial redshift.
All runs distribute 40 time steps linearly along the scale factor. A too low starting
redshift produces transients at non-linear scales. The cases with z

i

& 19 are almost
indistinguishable from each other, except for a slightly less power for z

i

= 100 at
k ⇠ 1hMpc

�1 (see text for details).

3.4.4 Force mesh grid size

Previous subsections were devoted to parameters that define the temporal discretization
of the simulation. We use now the most accurate configuration (that is, 40 time steps lin-
early distributed from zi = 19) to study the effects of the spatial discretization in the force
computations. In particular, we compare runs with PMgrid factors of 2 and 3. We note
that this parameter is of particular relevance as it has a large impact in the computational
cost of the runs. For example, PMgrid = 2 allows a saving of 70% of the computing time
and 30% of the memory consumption with respect to PMgrid = 3.

We find that changing from PMgrid = 3 to 2 only changes the matter power spectrum
by ⇠ 1% for k . 1hMpc

�1. However there is a more important effect on the halo mass
function. For PMgrid = 3, what corresponds to a comoving cell size of 0.25h�1

Mpc

given our box-size and particle load, we recover the mass function within 5% of the one
measured in MICE-GC down to 10

12.5 h�1
M�. This is shown in Fig. 3.7 with a solid blue

line. The mass scale where the mass function deviates at low masses is related to the
spatial resolution of the mesh. If the latter is degraded by a factor of 1.5 when PMgrid is
changed from 3 to 2, we expect a shift of that mass scale by a factor of 1.53 ' 3. For that
reasoning, we assume that the mass of a halo scales as the third power of the radius, or
equivalently, that the density inside a halo is constant, in agreement to the halo model
(Scoccimarro et al., 2001). Indeed, for PMgrid = 2, the mass function is within ⇠ 5% for
haloes of M ⇠ 10

13 h�1
M� ' 3⇥ 10

12.5 h�1
M�, in agreement with the expectations.

A discrepancy in the mass function might have two sources: a genuine difference on
the abundance or that halo mass estimates are systematically biased. The first case, and
assuming that the difference is spatially homogeneous, does not produce differences in
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FIGURE 3.7: Mass function at z = 0.5 using a PM

grid

= 2 and 3 (dotted and solid lines,
respectively). Both runs contain 40 time steps and have z

i

= 19. Decreasing the size of
the PM grid produces a larger overestimation of masses for large haloes and increases

the incompleteness for small haloes.

clustering for samples selected by mass cuts (see Table 3.1), while the second does. Since
we do not detect any significant difference in halo clustering at the low mass range for
different PMgrid factors, we infer that there is a completeness problem at those masses
due to the size of the force mesh. Not all haloes that should form are detected in the
simulation, and in a mass-dependent way.

At high masses, on the contrary, we observe a lower clustering amplitude (⇠ 1 per
cent at linear scales) for the run that produces a higher overestimation on the mass func-
tion. Both facts can be explained by a halo mass overestimation. One possible interpre-
tation is that the puffier the haloes due to the force resolution, more easily the FoF algo-
rithm bridges neighboring particles or small groups to a halo that really do not belong to
it, hence systematically biasing high the mass estimate, as we observe.

3.4.5 Optimal setup

So far, we have given an exploration of the main code parameters in COLA and their
impact on the dark matter clustering and on halo abundance. To achieve percent accuracy
on both quantities, at the very least 10 time steps have to be done before the redshift of
interest1, which means that in total we might need 20 or more until z = 0. The more
we do, the higher is the wavenumber where the dark matter power spectrum starts to
miss power. This is true to at least ⇠ 40 time steps, above that one should probably set
PMgrid > 3 (for the reference mass resolution we use, 2.9 ⇥ 10

10 h�1
M�), so that the

force resolution does not limit the accurate sampling of power up to k ⇠ 1hMpc

�1. In
Appendix B we show that still with these configurations, the COLA method yields better
results than a PM only evolution. The optimal time sampling distribution is given by

1Using a particle mass of 2.9⇥ 1010 h�1 M�.



38 Chapter 3. Optimization of a quasi N -body method for clustering

FIGURE 3.8: Comparison of the matter power spectrum in real space for the run using
optimal parameters (40 time steps and z

i

= 19, solid lines) and the default configu-
ration (10 time steps and z

i

= 9, dotted lines). We show redshifts 0, 0.5 and 1. This
optimal setup delivers a ⇠ 1 per cent accuracy at scales k ⇠ 1hMpc

�1.

spacing steps linearly in the scale factor, regardless of the rest of parameters, and for a
large number of time steps best results are achieved with an initial redshift of 19. A high
PMgrid factor is required for percent accuracy in halo abundance and matter clustering
and thus we set PMgrid = 3 despite its relatively higher computational cost. The prize of
further increasing it is not well justified in terms of additional accuracy.

A good choice of code parameters depends on which accuracy requirements need
to be accomplished by the final mock catalogues. In this work, our target is to achieve
per cent level accuracy on the matter power spectrum and halo abundance, in the wide
ranges of 1012.5 � 10

15.0 h�1
M� in mass, scales up to k ⇠ 1hMpc

�1 and redshifts com-
prised between 0 and 1.5.

Given these requirements we find that the best setup is set by 40 time steps linearly
distributed along the scale factor, starting at zi = 19 and with a PMgrid factor of 3. Fig.
3.8 shows the matter power spectrum using this configuration (solid lines) compared
with the case of 10 time steps starting at zi = 9 (dotted lines) at redshifts 0, 0.5 and 1.
At z = 0 (1), there is a 1 per cent accuracy up to k = 0.8 (1.3)hMpc

�1. Regarding the
mass function, the solid line in Fig. 3.7 depicts results at z = 0.5 for the optimal setup.
For other redshifts the conclusions are quite robust, i.e., a 5 per cent underestimation at
M = 10

12.5 h�1
M� and a ⇠ 5 per cent excess for M & 10

13.5 h�1
M�.

3.5 Halo clustering

In § 3.4 we found an optimal configuration set-up for COLA by benchmarking the matter
clustering and the halo abundance as a function of redshift against those measured in
MICE-GC. We now study what that configuration implies for the clustering of haloes.
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FIGURE 3.9: Halo-matter cross power spectrum. Rows correspond to different halo
mass corrections: original mass, after abundance matching (see § 3.5.1) and after bias
re-calibration (see § 3.5.2) from top to bottom. Columns separate halo samples M1,
M2 and M3 from left to right. The original catalogue has a bias underestimation of
⇠ 2 per cent in all cases. The abundance matching performs well at high masses
while the bias re-calibration is able to achieve a 1 % agreement on large scales (i.e,

k < 0.3� 0.4hMpc

�1) and 2 % at intermediate scales (0.4 < k < 0.7hMpc

�1).
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The first row in Fig. 3.9 shows the halo-matter cross power spectrum in real space and
without applying any correction to the catalogues. Different columns separate mass sam-
ples M1, M2 and M3 (see Table 3.1) from left to right. Solid, dashed, dot-dashed and
dotted lines display redshifts 0, 0.5, 1 and 1.5 respectively. The other two rows are ex-
plained in the following subsections § 3.5.1 and § 3.5.2. We notice that there is a general
⇠ 2 per cent under-estimation of the clustering amplitude at all mass bins and redshifts.
This constitutes a remarkable result: it is possible to predict the halo linear bias with an
accuracy of ⇠ 2 per cent without doing any correction nor the necessity of calibrating
against a reference full N -body simulation.

Note, however, that we have also found evidence that halo masses are biased. Hence,
we now explore two different corrections on the mass with the aim of reducing further the
deviations in the halo bias to the . 1% level. One is based on fitting abundances (abun-
dance matching, § 3.5.1) and the other on fitting clustering (bias re-calibration, § 3.5.2
§ 3.5.2).

3.5.1 Abundance matching

The cumulative halo mass function gives a monotonic relationship between the mass and
the abundance of haloes. Biased halo mass estimates makes this function in COLA to have
deviations with respect to a reference N -body simulation. If we have an external fiducial
mass function (coming from a full N -body simulation for instance), we can re-assign the
halo masses in the catalogue so that the reference abundance is fitted. When the incom-
pleteness is negligible, we expect this calibration to greatly reduce disagreements among
both catalogues if the ranking of halo masses has the correct ordering. If the incomplete-
ness is present, there are missing entries in the catalogue and trying to match abundances
will not produce the desired effect but a mixing of haloes with different clustering prop-
erties.

The second row in Fig. 3.9 shows the halo bias after correcting halo masses by abun-
dance matching, using the measured mass function in MICE-GC as reference. The small
disagreements in the top panels are greatly corrected in mass samples M2 at z > 0 and
M3 at all redshifts, but not in M1. This is consistent with the impact of incompleteness in
the mass sample described above: abundance matching works well as long as the incom-
pleteness is not present, i.e. M & 10

13 h�1
M� (see the solid line in Fig. 3.7).

We have tested as well the capabilities of the abundance matching for runs using
only 10 time steps, in which the “uncorrected” mass function is highly under-estimated
at z = 1 and the halo bias deviates by ⇠ 20 per cent (see Fig. 3.1). After abundance
matching, the bias is recovered at the 3 per cent level for all mass bins and redshifts, but
only for k < 0.5hMpc

�1, what illustrates that mass calibration performs worse when
non-optimal parameters are used in COLA.
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3.5.2 Halo bias re-calibration

We now explore an alternative mass re-calibration that is targeted to fit the halo bias. Note
in the first row of Fig. 3.9 the COLA run (with optimal set-up) yields always a residual
bias mismatch of 2 per cent, regardless of the mass sample and redshift. We can use this
fact to build an alternative correction independent of any parent simulation (assuming
the 2% factor is roughly independent of cosmology). In the framework of the halo model
(Cooray et al., 2002) halo bias and halo mass are related through a function that only
depends on cosmology b = b(M). Thus, to first order, a fractional reduction in the bias of
� ln b can be recovered with a shift in halo mass lnM ! lnM � � lnM given by2,

� lnM =

✓
@b

@ lnM

◆�1

b � ln b. (3.2)

In what follows we set � ln b = 0.02 (the bias calibration value we found) and evaluate
the derivative in Eq. 3.2 at the corresponding mass and redshift using the bias prediction
from Sheth et al. (1999) but we have checked that other fitting functions provide similar
results.

The recovered halo bias values after doing such mass re-calibration are shown in the
third row in Fig. 3.9. Now the agreement with MICE-GC is within 1% up to scales
k . 0.5hMpc

�1 for all redshifts and masses. However, the correction is not working
perfectly for the mass sample M3, where it is sub-percent up to k . 0.3hMpc

�1 but
yields an over-estimate of ⇠ 2% beyond. We believe this could be due to the limited
accuracy of the bias predictions coming from the theory of the peak background split
(Manera et al., 2010), used to evaluate Eq. (3.2). Provided with a better bias prescription
(or maybe the bias-mass relation measured from a reference N -body itself) one would
expect the bias re-calibration to give very good results by construction. Nonetheless the
accuracy remains within 1% for most cases and deviations from that are small.

As was the case for the abundance, this correction solves disagreements due to bi-
ased halo masses but not due to incompleteness. The over-abundance at high masses
is removed but the underestimation at low masses persists and the true incompleteness,
that might be larger, becomes visible. Despite that, haloes have the right clustering am-
plitude.

3.5.3 Redshift space

We now turn into discussing the performance of COLA for reproducing observables in
redshift space, as this is what is actually observed in large scale structure galaxy surveys.
Redshift space positions s are obtained by,

s = r +

vr

aH(a)
, (3.3)

2We choose logarithmic quantities as we are interested on relative variations.
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FIGURE 3.10: Monopole (l = 0) and quadrupole (l = 2) of the halo power spectrum in
redshift space (solid and dashed lines respectively) in COLA vs. the MICE-GC N -body
simulation. Different rows correspond to redshifts 0, 0.5 and 1 from top to bottom and
columns separate mass samples from left to right (halo masses have been corrected
by the bias calibration method). Monopoles have been corrected for shot-noise. Mea-
surements in COLA correspond to the mean over 48 runs using the optimal setup. At
large scales (k < 0.3hMpc

�1) the agreement is within 1 per cent for the monopole
and 2% � 3% for the quadrupole. Dotted and short-dashed lines are the monopole
and quadrupole after reducing halo velocities by 2 per cent, what brings the latter to

better agreement while leaving the former unchanged.

where r is the position in real space, vr is the peculiar velocity along the line of sight
direction, a is the scale factor and H = a�1da/dt the Hubble expansion rate. For con-
creteness we will focus in halo power spectrum multipoles and assume the plane-parallel
approximation, that is, fixing the line of sight to one of the three Cartesian axes.

In order to reduce the statistical errors in higher order multipoles we have produced
48 COLA runs using the optimal setup described in § 3.4.5. We split the halo catalogue in
the 3 mass bins as in Table 3.1, with halo masses re-calibrated using the bias method with
� ln b = 0.02 (see § 3.5.2).

Figure 3.10 shows the mean of the monopole (l=0) and the quadrupole (l=2) over the
suite of COLA runs divided by the corresponding quantities measured in MICE-GC. Rows
separate redshifts 0, 0.5 and 1 from top to bottom and columns mass bins M1, M2 and M3
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FIGURE 3.11: Mean halo power spectrum hexadecapole in COLA (after the correction
in the halo masses by the bias re-calibration method with �b/b = 0.02) compared to
the one in MICE-GC. Different rows correspond to redshifts 0, 0.5 and 1 from top to
bottom and columns separate mass samples M1, M2 and M3 from left to right. For
k > 0.2hMpc

�1 the agreement with the N -body is at the . 20% level across redshifts
and mass bins. The dotted line includes as well a reduction in halo velocities of 2 per

cent (see text for details).
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from left to right.
For reference we recall the large-scale limit expressions for these quantities (Kaiser,

1987) assuming a simple linear bias model,

P s
l=0,hh(k) =

�
b2 + 2

3bf +

1
5f

2
�
P r
mm(k),

P s
l=2,hh(k) =

�
4
3bf +

4
7f

2
�
P r
mm(k), (3.4)

where b is the bias and f ⌘ d lnD
d ln a the linear growth rate.

At large scales (k < 0.3hMpc

�1), the agreement with MICE-GC is within 1 per cent
for the monopole. Recall that we are using bias-recalibrated masses what ensures that
the halo clustering is well reproduced in real space. And this contribution is the leading
order for the monopole in redshift space, on large scales (i.e. the b2P r

mm term in Eq. 3.4).
Had we used the actual COLA halo masses instead we would have obtained biases off by
2 per cent and the monopole underestimated by at least ⇠ 4%. In turn, the quadrupole in
Fig. 3.10 is systematically overestimated by ⇠ 2 per cent across all mass bins and redshifts
(k < 0.3hMpc

�1). On large scales, the leading order contribution to the quadrupole is
the cross-correlation between halo densities and halo velocities, i.e. the term bfP r

mm in
Eq. 3.4. This means that any inaccuracies in reproducing the velocity field by COLA will
have a direct impact in the quadrupole. For instance we have checked that the differences
on large-scales can be corrected by reducing by 2 per cent each halo velocity (what would
amount to reduce the overall bulk flow). We over plot (without error bars) the monopole
and the quadrupole with dotted and short dashed lines respectively after applying such
velocity correction. As expected, the quadrupole is now perfectly in agreement at large
scales and the monopole remains almost unaltered.

At smaller scales (k > 0.3hMpc

�1) we observe larger discrepancies. The monopole
is underestimated, specially at high masses, and the quadrupole is overestimated. We
believe this is due to the details of the full velocity PDF3 but we do not attempt to tune
the results further to those of MICE-GC as i) the results on these scales will eventually
depend on the galaxy sample under consideration and ii) these are scales that start to
be smaller than those used in standard large-scale structure probes such as BAO. For
instance, small-scale corrections can be postponed to a later stage when haloes are pop-
ulated with galaxies using an HOD prescription, in which the velocity dispersion can be
fitted to have agreement with observations. For reference, we have checked that adding
a dispersion component to the halo velocities drawn from a Gaussian distribution with a
width of ⇠ 35 km s

�1 and zero mean reduces the quadrupole for k > 0.3hMpc

�1 and is
then in agreement within 2 per cent for most scales, mass samples and redshifts, whereas
the monopole is not substantially affected.

Figure 3.11 shows the equivalent of Fig. 3.10 but for the hexadecapole (l = 4). We
find that our optimal configuration for COLA yields an excess of ⇠ 50 per cent at large

3For example, we have measured the halo 1-dimensional velocity distribution and found that the fraction
of haloes with center of mass velocities larger than 500 km/s is slightly underestimated by few percent in
COLA (the exact number varies for mass samples and redshift), although the halo velocity rms agrees within
1 per cent with MICE-GC.
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FIGURE 3.12: Comparison of the mass function for some of the methodologies. Only
COLA and PINOCCHIO have predictive power on that observable, although the sec-

ond one has been tuned to reproduce it.

scales, while for k > 0.2hMpc

�1 the agreement is significantly improved, down to ⇠ 20

per cent. These differences are not significantly changed when the velocity correction of
2 per cent is applied. If we further add an ad-hoc velocity dispersion term, as discussed
above for lower multipoles, we achieve an agreement within 10 per cent at small scales.

3.6 Fast methods comparison project

This last section is devoted to a comparison project among most of the existing approxi-
mate methods, that is: COLA, EZmocks, HALOgen, PATCHY, PINNOCHIO and PTHalos
(see § 2.2 for references). For the comparison, all the methodologies were run using the
same cosmology and box size as the reference N -body simulation BigMultiDark (Klypin
et al., 2016). Then a halo sample with the threshold M & 10

13 h�1
M� was drawn and the

clustering measured.
The comparison of the mass function is shown in Fig. 3.12. The agreement is within

5% for the different methods. In particular, COLA was run with only 10 time steps and a
particle mass ⇠ 20 times larger than our fiducial set-up (see § 2.4), and taking that into
account the findings are compatible with previous results (see Fig. 3.1). PINOCCHIO also
accurately predicts the abundance of haloes and HALOgen is included in the plot for
a consistency check, since it should reproduce the input mass function of Watson et al.,
2013, as it does. The rest of methodologies fit reference halo abundances and therefore
there is no interest in showing them in the plot.

Fig. 3.13 shows the cuadrupole of the power spectrum. These confirm that COLA pro-
vides the most accurate results, that are within 5% with respect to BigMultiDark, even
that for this particular project the standard 10 time steps configuration was used. PINOC-
CHIO reproduces the cuadrupole within 10%. Note however that the code version used
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FIGURE 3.13: Comparison of the quadrupole of the power spectrum. Only COLA gives
predictions within 5% at all scales and PINOCCHIO within 10%.

is old and that the most recent one (Munari et al., 2016) expands the dynamics to higher
perturbative orders for a better accuracy. EZmocks and PATCHY have an accuracy at the
15% level. Nonetheless, they demand much less computational resources.

Finally, Fig. 3.14 shows the three-point correlation function in real space, which is
defined similarly as the two-point correlation function (see equation 1.13 in § 1.3) as
⇣(r1, r2, r3) =< �(r1)�(r2)�(r3) > . The measurements are for triangles with two fixed
lengths of 10 and 20h�1

Mpc while the third one varies and is represented in the x-axis.
Results are more noisy but the conclusions are similar than the ones for the cuadrupole
of the power spectrum.

Comparing COLA against the rest of techniques, it is clear that COLA is the one that has
higher computational requirements, specially on the memory and the CPU-time. How-
ever, it is still 2-3 orders of magnitude faster than a conventional N -body simulation and
it is the most accurate method. Furthermore, it is a stand-alone technique that does not
rely on any assumption nor calibration with an external simulation.
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FIGURE 3.14: Results for the three-point correlation function in real space.





49

4
SIMULATIONS IN THE LIGHT
CONE

According to special relativity, light travels at a finite speed. As a consequence, all phys-
ical information in the Universe is obtained in the so-called past light cone, in which
light from more distant objects that is received by observers today was emitted at an ear-
lier stage of the cosmic evolution. Hence, realistic simulations of the galaxy distribution
should incorporate such structure in the output data, where objects are less evolved as
their distance to the observer increases.

This chapter is devoted to how ICE-COLA implements this feature and produces cat-
alogues on-the-fly. We start in § 4.1 by exposing the problem of generating light cone data
in cosmological simulations. How this is solved in ICE-COLA is presented in § 4.2, where
is sketched the algorithm for identifying the particles that enter into the light cone. This
data can be used to produce different kind of catalogues, as it is explained in § 4.3. Finally,
in § 4.4 is discussed the performance of the code in various computational aspects.

4.1 Mimicking real observations

Astronomy is a scientific discipline in which distances are tremendously large and, in par-
ticular, cosmology stands at the highest limit of the distance ladder (see Rowan-Robinson,
1985 for an historical review or e.g. Freedman et al., 2012; Efstathiou, 2014; Riess et al.,
2011; Beaton et al., 2016; Riess et al., 2016 for the state-of-the-art in direct measurements
of the Hubble constant). Observations are one of the main sources of knowledge in astro-
physics and consist in collecting photons emitted by celestial objects. The light we receive
in the present was emitted in the past and therefore the properties we can measure are
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relative to that time. In terms of the special relativity, we observe our past light cone,
where more distant objects are seen at an earlier time. Within the context of an expand-
ing universe, the lookback time tL to an object is the increment of the age of the Universe
between the emission time of the photons and now (Hogg, 1999)

tL(z) = tH

Z z

0

dz0

(1 + z0)E(z0)
, (4.1)

where tH ⌘ 1/H0 is the Hubble time nowadays and E(z) is defined in equation 1.10.
Observational data consists thus in a mixture of properties of objects at different evolu-
tionary stages according to their redshift. Therefore, mock catalogues oriented towards
understanding cosmological surveys will be more realistic if they are built in the form of
a past light cone, where the relative distance of an object from an hypothetical observer
determines the time when its properties are to be computed. There are many galaxy
surveys planned for the next years that will sample the cosmic evolution also well be-
fore dark energy dominates, i.e., z & 2, such as Euclid1, the Wide-Field Infrared Survey
Telescope (WFIRST)2, the Large Synoptic Survey Telescope (LSST)3, Dark Energy Spec-
troscopic Instrument (DESI)4 and the Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS)5. They will probe large variations in the cosmic growth from mat-
ter to dark energy dominated regimes and this evolution needs to be modelled in mock
catalogues.

Numerical N -body simulations evolve the matter distribution inside a box by com-
puting its gravitational interactions (and hydrodynamical as well if fluid properties of gas
particles need to be considered). The simplest way to store the data is creating snapshots
at certain steps of the simulation, in which all the outputted information correspond to
the same epoch. Then, having multiple snapshots allows to sample discretely the cosmic
evolution and these can be stitched together to build a light cone (Blaizot et al., 2005;
Kiessling et al., 2011a; Merson et al., 2013). If snapshots are spaced in the temporal axis
by�z, each one covers the interval (zi��z/2, zi+�z/2), which corresponds to a comov-
ing distance interval (�i�,�i+). An observer is placed inside the box and the comoving
sub-volume delimited by the distance interval is copied from snapshot i to the light cone.
This can be done either in the plane-parallel approximation (in which distances with re-
spect to the observer are large and line-of-sight vectors are assumed to be parallel), or in
a spherical geometry (where sub-volumes form multiple concentric shells). The former
is suited for small patches of the sky but the latter is necessary for large area mock cata-
logues that will be needed by upcoming surveys that will observe large fractions of the
sky.

Another limitation of appending sub-volumes from different snapshots is that dis-
continuities are generated at the boundaries between them. These can be minimized if

1http://www.euclid-ec.org/
2http://wfirst.gsfc.nasa.gov/
3http://www.lsst.org
4http://desi.lbl.gov/
5http://pan-starrs.ifa.hawaii.edu/public/

http://www.euclid-ec.org/
http://wfirst.gsfc.nasa.gov/
http://www.lsst.org
http://desi.lbl.gov/
http://pan-starrs.ifa.hawaii.edu/public/
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a finer time sampling is used by producing a large number of snapshots, but this would
lead to huge data volumes. Alternatively, one can generate a light cone on-the-fly, that
is, at running time of the simulation, what overcomes these difficulties by skipping the
production of snapshots as well as the post-processing step of stitching them together.
This enables a dramatic reduction of the data volume to be stored and the generation of
all-sky light cones with a smooth evolution across all the volume. However, it requires
a more elaborate code to identify during the simulation those particles that are entering
into the light cone and compute their coordinates at crossing time.

Fast methods aim at reducing computational requirements, and these includes as well
data storage. Even more, since they are fast, they enable the production of massive en-
sembles of simulations. Therefore, it becomes essential to incorporate techniques to min-
imize catalogue sizes and therefore simulated data need to be produced in the light cone
format at run time. This chapter is devoted to the modifications that have been imple-
mented in ICE-COLA in order to produce light cone catalogues on-the-fly. First, § 4.2
describes the algorithm for determining the particles that enter into the light cone in mul-
tiple box replicas. Then in § 4.3 it is explained how different kind of catalogues can be
produced. Lastly, § 4.4 assesses the numerical performance of the ICE-COLA in three dif-
ferent aspects: the overhead in the running time, the memory usage and the data volume
of the catalogues produced.

4.2 Light cone construction

4.2.1 Crossing time

The core part of the algorithm is to determine for each particle the exact time when it
enters into the light cone, which is called the crossing time tc, or ac if it is expressed as
a scale factor. Typically, collissionless N -body simulations evolve particle coordinates
by the drift and kick temporal operators (see § 2.3.2), which update particle positions
and velocities respectively under the sole force of gravity for a dark matter-only simula-
tion. When the evolution has reached redshift z, the concentric shell around an observer
defined by (z � �z/2, z + �z/2) can be constructed, where �z defines the width and
separation of shells. Conventional N -body simulations have high temporal resolution
and calling the routines for the light cone construction at each time-step would not be
efficient. For this reason it should be assigned a value to�z considerably larger than the
interval between consecutive time-steps. In COLA, however, time-steps are much broader
and it is more adequate to adjust the light cone steps to those of the simulation itself.
Therefore, the light cone routine is called after each temporal operator.

At any moment of the simulation, particle positions and velocities are given by the
last drift and kick operators respectively, computed at scale factors aD and aK . Coordi-
nates at intermediate time values can be interpolated using an extra pair of drift and kick
operators to move the particle to a desired scale factor a (while it obeys min(aD, aK) <

a < max(aD, aK)). By converting aD and aK to comoving distances (see equation 1.11)
we find the radii that define a spherical shell in the light cone, as it is shown in Fig. 4.1.
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FIGURE 4.1: Diagram of a particle at its crossing time. Initially, at drift time, the
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Particles inside that volume are going to be included in the light cone in the current call,
but before we have to compute their coordinates at crossing time.

A particle will move from position r(aD) at drift time to r(ac) at crossing time tc that
can be computed from its radial velocity, having a variation on the comoving distance
along the line-of-sight of

��1 ⌘ |r(ac)|� |r(aD)| = vrad(tc � tD)

a
, (4.2)

where vrad = v · r̂ is the physical radial velocity and we assume that variations on the
scale factor are negligible. During the same time, the light cone boundary shifts by a
comoving distance

��2 =
c(tc � tD)

a
. (4.3)

Similarly, the expression for the total distance is

�� =

c(tp � tD)

a
, (4.4)

where tp denotes the time when the light cone is at the comoving distance |r(aD)|. Then,
by simply equating�� = ��1 +��2 the crossing time can be expressed as

tc =
c

c+ vrad
(tp � tD) + tD. (4.5)

To evaluate it one needs the velocity of the particle, the time of the last drift operator and
the initial position of the particle, that fixes tp. For slowly moving particles, vrad ⌧ c and
tc ⇡ tp: the crossing time is nearly equal to the moment when the light cone reaches the
original position of the particle, as expected.
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After determining the crossing time, particles are displaced to that time by computing
D(aD ! ac) and K(aK ! ac). Note that particles might enter inside the volume of the
shell defined by aD and aK when the displacement is applied and therefore an extra
buffer zone is needed at the edge associated with aK , as shown in Fig. 4.1. The crossing
time is computed as well for particles in that region but only those which are inside the
shell after the displacement are kept in the light cone output. Note that the buffer is only
necessary around the boundary associated with the kick operator, since close to the other
boundary we have that tp ! tD, from equation 4.5 it follows that tc ! tD and therefore
D(aD ! ac) ! D(aD ! aD) = 0.

Equation 4.5 has to be evaluated for every particle that is a candidate to be inside the
current shell of the light cone. This involves conversions between the scale factor, the
age of the Universe and comoving distances. For a fast performance of the algorithm,
values for those functions are computed once, at the beginning, and later they are just
interpolated at the desired value. Since they are smoothly-varying quantities, with as
few as 10 interpolating points sampling the range of values needed at a given call to
the light cone routine and using double precision is typically enough to ensure sufficient
accuracy. The temporal operators that displace particles to the crossing time need to
evaluate as well time-dependent variables and are also pre-computed and interpolated
later on.

The accuracy on the crossing time determined by evaluating the approximate eq. 4.5
with interpolated quantities, can be tested calculating the difference between the radial
distance to the particle at crossing time, |r(ac)|, and the light cone position at the same
time, �(ac). We have checked that deviations are only ⇠ 1h�1

Kpc on average and ⇠
50h�1

Kpc the largest value of all particles6. This is orders of magnitude below the typical
force resolution length employed in COLA so we can hence safely neglect this error.

A pseudo-code that sketches how the light cone algorithm works is shown in Fig. 4.2.
It also includes the generation of box replicas, explained next in Sec. § 4.2.2.

4.2.2 Box replicas

The position of the hypothetical observer, that determines the centre of the light cone, is
arbitrary for a simulation with periodic boundary conditions. For simplicity, it is usually
chosen to be at coordinates (0, 0, 0), at one corner of the box, so that the full simulated
volume extends up to (Lbox, Lbox, Lbox). If the outputs of the simulation are snapshots (or
data derived from them), in which all the information correspond to a single epoch, the
volume (0�Lbox, 0�Lbox, 0�Lbox, ) contains all the possible information that can be ex-
tracted from the simulation at a fixed time. Nonetheless, in the production of light cones
this is no longer the case since the time of writing information in a region of space de-
pends on the relative distance between the particles and the observer. This fact, together
with the periodic boundary conditions, allows to replicate the box to adjacent positions
and fill in a larger volume around the observer. As a consequence, the total volume of
the catalogues will extend to higher redshifts and project a larger area on the sky (for

6These numbers are taken from a simulation with 20483 particles.
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�1 = �(max(aD, aK));
�2 = �(min(aD, aK));
�1,buffer, �2,buffer = f(�1,�2,velocity_buffer_size);
Compute quantities evaluated at aD or aK ;
Setup spline interpolation for (aD, aK);
for (i = 0 ! n_replicas - 1) do

Compute origin of the replica i: r0,i;
if (not inside replica i) then

Skip replica ;
end
for (j = 0 ! n_particles - 1) do

if (�1,buffer < |rj(aD) + r0,i| < �2,buffer) then
Compute crossing time ac;
Compute Drift(aD ! ac);
if (�1 < |rj(ac) + r0,i| < �2) then

Compute Kick(aK ! ac);
Save particle j coordinates;

end
end

end
end

FIGURE 4.2: Algorithm of the light cone construction. Quantities such as the crossing
time or the temporal operators are computed just for those particles which is needed.
Here it is shown a simplified version, the full code has additional features and some

of them are given in Fig. 4.7 for the case of running a halo finder in the light cone.

instance, full sky). As a disadvantage, modes are sampled multiple times and repeated
structures could potentially appear in the light cone, although separated by a distance
comparable to the box size. However, since a given particle in two different replicas will
be seen by the observer at different times, their evolutionary stage will differ and thus no
obvious repetitions of structures will be observed in the light cone volume.

The algorithm produces box replicas by simply shifting positions by the vector n ⌘
(nx, ny, nz) Lbox, where n is expressed in units of the box size and therefore its compo-
nents have integer values. ICE-COLA builds the necessary number of replicas according
to the values of two parameters specified in the parameter file:

Starting redshift, zLC : converting it to a comoving distance and dividing by Lbox gives
the necessary number of replicas in one direction:

nrep,1D = ceiling
✓
�(zLC)

Lbox

◆
(4.6)

Number of dimensions replicated, ndim: It determines in which axis i it is allowed to
have replicas along the negative semi-axis: ni < 0. If set to 0, the light cone is built
only in the octant where x, y, z > 0. If set to 1, nx iterates over positive and negative
values; with 2 also ny; and with 3 nz as well, which produces an all-sky light cone.
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Then, the total number of box replicas obeys the formula

nrep,total = n3
rep,1D ⇥ 2

n
dim . (4.7)

It scales with the third power of the number of replicas in one direction, so a high value
for the starting redshift may produce a very large number of box replicas, making the
light cone computations to become a significant fraction of the simulation time. The con-
figuration that has been used for the light cone simulations of this thesis uses nrep,1D = 2

and ndim = 3, which results in 64 box replicas (as was the case for the reference N -body
simulation, MICE-GC).

When the code iterates over replicas, it is very straightforward to check if the the
sub-volume is intersected by the current shell being constructed. The replicas where this
condition is not true are skipped, reducing the number of computations, as it is sketched
in Fig. 4.2.

4.3 Catalogues on-the-fly

Section § 4.2 (see also Fig. 4.2) gives an overview of the core of the algorithm to build the
light cone on-the-fly in ICE-COLA. Now we turn in how this information can be used
to generate different kinds of catalogues. Some of them are complementary or represent
different levels of data compression.

After running the algorithm that builds the light cone, the code can access a sub-
sample of particles with their coordinates (computed at the crossing time). The simplest
catalogue that can be produced is just a dark-matter particle distribution, as described in
§ 4.3.1. It represents a low-level output that contains all the information. Therefore this
turns out into huge data volumes, that are not suited for producing massive ensembles of
realizations. For instance, an all sky light cone starting at redshift 1.4 in a simulation with
a particle mass of 3 ⇥ 10

10 h�1
M� generates 6 TB of data (matching the MICE-GC light

cone specifications), which is hard to write, store, transfer and analyse. For these reasons
it is essential to produce derived and compressed data catalogues that, although will
not contain all the information, allow to model the necessary observables for galaxy sur-
veys. With that motivation, ICE-COLA implements two higher level catalogues: § 4.3.2
describes the projected matter density field in pixelated concentric spherical shells (that
enable modelling weak lensing observables) and § 4.3.3 is devoted to the implementation
of the Friends-of-Friends algorithm (Davis et al., 1985) in the light cone (that produce halo
catalogues). Thanks to these data formats, large compression factors can be achieved.

4.3.1 Dark matter particle distribution

As discussed above, a particle catalogue may become extremely large, specially if the
volume sampled by the light cone covers many box replicas, and thus it requires mas-
sive I/O7 operations. Using binary (unformatted) files is mandatory for such outputs, in

7Input/Output.
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order to reduce their size and for a better performance of the I/O routines. A quite stan-
dard format in cosmological simulations is the Gadget one, very popular due to the well
known code with the same name (Springel, 2005)8. ICE-COLA also adopts this format,
in which data is plit into several files that contain a header of 256 bytes. The number of
particles contained in a file has to be known in advance at the moment of starting to write
it, since it is contained in the header. But during the light cone construction, only the par-
ticles in the current shell are accessible in memory after being determined, and therefore
the Gadget file can only include those particles. Therefore, the code would have to pro-
duce a distinct file for every shell, process and replica, which for large runs might turn
into several thousands. This is often regarded as a bad practice, since most file systems
may be inefficient managing those numbers.

One simple solution would be to re-write files to append new data after each call to
the light cone algorithm, which would keep the header updated. This might still be ac-
ceptable for conventional N -body simulations, but not for ICE-COLA since it is necessary
to have optimized I/O operations that do not spoil the speed-up of the method. Instead,
the solution adopted is to write distinct files for each replica and shell, but gather pro-
cesses in groups that write in parallel into the same file. The number of files is controlled
by the parameter n_files and the number of processes that are grouped for each file is
determined by trying to have a similar number of particles np_target among the files:

np_target =

np_remaining
n_files_remaining

, (4.8)

where np_remaining is the sum of the number of particles of processes still not as-
signed to any file and n_files_remaining is the number of files remaining to have
processes assigned. Initially, processes are added to the group that will write to the first
file until their joint number of particles is similar to np_target. Then the values for
np_remaining and n_files_remaining are updated and the new target number of
particles is used for determining the second group of processes that will write to the sec-
ond file. The process is repeated until all processes have been assigned a file, as it is
depicted in more detail in Fig. 4.3.

However, the algorithm described in Fig. 4.3 is a simplified version and there are
some exceptions that the code also takes into account. The reason for most of them is that
some processes may not have particles inside the shell of the light cone. We refer to these
as inactive processes. If the number of active processes is lower than n_files, then the
number of files is set to the number of active processes. In the situation that all processes
are inactive, the code still writes a file, that contains just the header and zero particles.
The reason is to avoid gaps in the file nomenclature, that would complicate the input
routine in a posterior analysis of the data. Finally, the code also checks at each iteration
of the algorithm whether the number of active processes pending to be assigned to a file
is equal to n_files_remaining. In such case, these active processes are only grouped
with inactive ones (so that at least each file has one active process).

8The user guide of the Gadget-2, where also the Gadget format is explained, is available at http://
wwwmpa.mpa-garching.mpg.de/~volker/gadget/users-guide.pdf

http://wwwmpa.mpa-garching.mpg.de/~volker/gadget/users-guide.pdf
http://wwwmpa.mpa-garching.mpg.de/~volker/gadget/users-guide.pdf
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rank_new = 0;
rank_old = 0;
np_remaining = sum(np[:]);
n_files_remaining = n_files;
for ( ifile = 0 ! n_files - 1) do

n_target = np_remaining / n_files_remaining;
while True do

if ( sum(np[rank_old:rank_new+1]) � np_target) then
dif1 = np_target - sum(np[rank_old:rank_new]);
dif2 = sum(np[rank_old:rank_new+1]) - np_target;
if (dif2<dif1) then

rank_new++;
end
break;

end
rank_new++;

end
rank_files[ifile] = rank_new;
np_remaining -= sum(np[rank_old:rank_new]);
rank_new++;
rank_old = rank_new;
n_files_remaining--;

end

FIGURE 4.3: Algorithm of the dark matter particle light cone for aggreging processes
into n_files groups that will write files in parallel. The variable np must be an
array containing the number of particles dumped to the light cone by each process.
rank_files will contain the maximum rank, i.e., process number, that will write to
each file. The actual code is bit more elaborated than this pseudo-code, see the text for

more details.

Once finished the grouping of processes, a new MPI communicator is built for each
file. The header and the two 4-byte integers that give the length of each data block are
written by the process with rank 0 in the file communicator, and the actual data is written
in parallel by collective MPI-I/O writing routines9. This is done by setting the correct file
displacement for each process, that is, the absolute byte position relative to the beginning
of the file. It is computed by communicating how many particles will be written by the
processes in the left. Then, each section of the file is written in parallel by the processes
that belong to its communicator.

4.3.2 Two-dimensional projected matter density fields

A way to compress the data volume of a simulation is to build a grid and store for each
cell the occupation number of particles. The product is a density field with the resolution
of the cell size. And the compression factor comes from the fact that the number of cells
will be typically much smaller than the number of particles. This technique is employed

9For a complete description of the MPI-I/O routines see chapter 13 of the MPI-3.1 standard, available at
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
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frequently in simulations by choosing a regular grid on the Cartesian axes and enables
studies even in the non-linear regime if a good resolution is used.

However, for the catalogues described in this section, ICE-COLA uses a different ap-
proach by using spherical coordinates, which are the natural choice for the light cone.
Thus, the matter field is projected onto several thin concentric shells around the observer,
which can be later used to model weak lensing observables (see § 5.2). This idea was orig-
inally proposed and implemented in N -body simulations by Fosalba et al., 2008, using
the Healpix discretization of the sky area into pixels (Górski et al., 2005) and later imple-
mented in other light cone simulations (Das et al., 2008; Teyssier et al., 2009). For this
thesis, the idea has been adapted to the ICE-COLA algorithm and peculiarities.

In the first place, the discretization of the volume is done using spherical coordinates
centred at the observer. Placing several hundred bins along the radial direction suffices to
recover accurately the redshift evolution. In particular, there are 265 shells until redshift
z = 1.4, having a width of ⇠ 7(18)h�1

Mpc at low (high) redshift, corresponding to steps
of ⇠ 35Myears in look-back time. The binning was chosen to be the same than the used
for MICE-GC for an ease comparison to that reference simulation. It is left for future
work the study of how many radial bins are enough to recover accurately the matter
field within the accuracy of COLA.

Then, each shell is discretized into equal-area pixels using the Healpix format. The
simulations developed for this thesis use Nside = 2048, that produces 12N2

side ⇡ 50 mil-
lion pixels with a size of ✓ ' 1.7 arcmin . Maps consists on number counts of dark matter
particles, represented by 4-bytes integers. A single map has 192MB of data, so all the
maps need 50 GB of disk space. This represents a compression factor of two orders of
magnitude with respect to the size of the dark matter three-dimensional particle light
cone (see § 4.3.1).

Note that the light cone routine is called twice at each time step: after the drift and the
kick operators. So a simulation with 40 time steps will generate less than 80 calls (since
at the beginning the light cone has still not started) but will output 265 Healpix maps.
Which means that many of them have to be constructed simultaneously. The procedure
is the following. Before the algorithm starts the loop over replicas (see Fig. 4.2), all maps
are initialized to zero. At the point where particle coordinates can be saved, the code
instead adds a count to the pixel of the map that correspond to its angular and radial
positions. The maps are finished after iterating over all the replicas and the particles
inside them.

However, the wide shell built at each call to the light cone routine is used to produce
several thinner maps, as discussed above. These maps that are in the edges of the wide
shell are incomplete, since their volume extend to the shell computed during another call
to the routine. In these cases, the second call writes a separate file and both partial maps
have to be joined at post-processing by simply adding them.

We can see in Fig. 4.4 the matter distribution at full sky and two zoomed regions of a
stack of various shells at redshift 0.5. The homogeneity of the Universe is evident at large
scales, while filaments and voids display large fluctuations at more moderate scales.
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FIGURE 4.4: Visual representation of the two-dimensional projected matter field. The
upper graphic shows all the sky, while the lower left and right zoom in patches of
30 ⇥ 30deg2 and 8 ⇥ 8deg2 respectively. 20 Healpix maps with an angular resolution

of 1.70 were stacked in the redshift interval z = 0.45� 0.55.

The maps thus obtained serve to model weak lensing observables on the full-sky light
cone, incorporating naturally the spherical geometry. Furthermore, the Healpix software
is specially designed to efficiently transform maps in the spherical harmonic decompo-
sition, which allows measuring angular power spectra or solving the equations of weak
lensing efficiently with built.in tools. § 5.2 explains the pipeline developed with that aim
and the accuracy of the whole method with ICE-COLA, which is studied further in Chap-
ter 6 where they are applied to halo catalogues.

4.3.3 Halo catalogues

Halo catalogues are one of the main outcomes of large-scale structure simulations.
Parallel COLA includes a parallel Friends-of-Friends (FoF) algorithm (Davis et al.,
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1985) that runs on-the-fly on particle snapshots, and it is based on the publicly avail-
able serial code from the N -body shop of the University of Washington10. This thesis
explains how in ICE-COLA it has been adapted to produce FoF catalogues in the light
cone. Although the modification of the algorithm may seem rather simple from a theo-
retical point of view, there are many technical underlying complications that are briefly
explained in this section.

To start with, it is necessary to understand how this halo finder works. The FoF
algorithm links together particles that are separated by a distance smaller than the so
called linking length, b. Groups are formed by adding the neighbours that are within the
linking length of particles members of the group. The linking length is expressed in units
of the mean inter-particle distance and for this work we use the widely used standard
value b = 0.2, which corresponds approximately to an overdensity of � = 180 in the
context of the spherical collapse model (Cole et al., 1996). Once groups have been found,
the halo coordinates are simply given by the centre of mass of the member particles and
their mean velocity.

The FoF does basically local operations, that consist first in searching for neighbour-
ing particles. To do so, the serial code version from the N -body shop uses a k-dimensional
tree (or k-d tree for short), in which the space is recursively divided into halves until each
leaf nodes contains few particles. In ICE-COLA, when the FoF is called from the light
cone, some processes may not have particles in the current shell. This is something that
the code does not expect and triggers a bug while building the k-d tree. It can be avoided
by simply adding an isolated fake particle to these processes, that will not form any
group.

Buffer zones and ghost particles

In Parallel COLA, groups are built within the sub-volume of each process. After-
wards, a communication step is required to merge the structure that lies near the edges
of each slab. The code assumes periodic boundary conditions and edges corresponding
to the box limits are mapped to the opposite side of the box. This has no confusion when
the particle distribution comes from a snapshot. In the light cone, however, it needs a
special care since the crossing time varies with the position. The environment of a parti-
cle close to the box edge has to be completed with the distribution corresponding to the
neighbouring replica. But since only one replica is computed at a time, it is necessary to
add buffer zones around box edges and provide in that way the required environment to
the algorithm. For the same reason, buffer zones are also needed around the shell limits
and are added to the velocity buffer (for the latter, see Sec. § 4.2.1). The particles inside
either the shell or the boundary regions are passed to the FoF code, but at the end only
those haloes whose centre of mass position is inside the volume of the current shell and
the local replica are written to the catalogue.

A visual representation of this geometry is depicted in Fig. 4.5, that shows a box
replica intersected by a shell of the light cone, coloured in blue. The two red strips are

10http://www-hpcc.astro.washington.edu/tools/fof.html

http://www-hpcc.astro.washington.edu/tools/fof.html
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FIGURE 4.5: Sketch of the buffer zones needed for running the FoF algorithm in the
light cone. The blue band is the shell under construction, which is surrounded by a
buffer zone. Buffer zones within the local replica are coloured in red, while those that
correspond to neighbouring replicas are in orange. Particles belonging to the latter are
called ghost. Letters identify the different regions with ghost particles, using capital
letters for their original physical location and the lower case for their associated region
mapped inside the local replica. Vertical lines depict the volume decomposition of the

parallelization (in that case it would correspond to 16 processes).

buffer zones belonging to the local replica, while the orange ones correspond to neigh-
bouring ones. We refer to the particles within the latter as ghost particles, since their phys-
ical information really belongs to the white regions outside the box. For these, their
crossing time is computed as if they were placed in the neighbouring replica, but they
coordinates are trimmed to the range 0� Lbox, as shown in the figure. The reason is that
the FoF algorithm expects values inside this range, and thanks to periodic boundary con-
ditions the final result will be the same. However, an additional step will be necessary at
the end to shift by ±Lbox the position of some of the haloes, as we explain next.

The width of buffer zones has to be larger than the maximum separation between any
particle and its halo center of mass position. Due to the approximated dynamics in COLA,
haloes are puffier and more extended (Tassev et al., 2013) and therefore it is difficult to
predict theoretically a correct size for the buffer zones. The pragmatic approach used is
computing few statistics during a real run (see § 2.4.2 for the characteristics of the light
cone simulations developed for this thesis). For simplicity of its technical implementa-
tion, it is registered the distance between the first particle that starts forming a group and
the centre of mass of the final object. We shall assume that this particle has the same
properties as if any random member of the group was picked up. The rms of the distance
thus defined is ⇠ 0.3(0.4)h�1

Mpc for all FoF with more than 20 (50) particles. This sep-
aration is only representative for haloes close to the minimum mass, since they are the
more abundant.

To encompass all possible haloes it is necessary to look at the maximum separations,
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FIGURE 4.6: Distribution of the maximum distance between a particle and its halo
center of mass. Each event is a call to the FoF routine. The y-axis of the two di-
mensional plane is the number of particles of the halo: mass is correlated with the
maximum separation. The distribution is projected into a histogram below, peaking
at 5h�1

Mpc. The vertical line displays the width of buffer zones, see the text why this
value is an optimal choice.

as displays Fig. 4.6. This scatter plot has one thousand events, corresponding to all the
calls to the FoF routine in the whole simulation. Represented in a two-dimensional plane
is the maximum separation of all groups found in a single call and the number of particles
of that object. The distribution is projected into a histogram in the lower part, showing
that it peaks at 5h�1

Mpc and declines quickly thereafter.
With Fig. 4.6 in hand, the most conservative choice would be to set the buffer zone to

⇠ 10h�1
Mpc, which encompasses almost the whole range of values. However, for the

sake of performace, values as low as possible are desired, in order to reduce the volume
where computations are duplicated. In particular, it was set to 7h�1

Mpc. Maximum
separations higher than that were only found in 50 calls to the light cone. For these, there
may be the risk of providing a too small environment to the FoF algorithm for haloes
for which: i) They are very massive and have particles further than 7h�1

Mpc, ii) their
center of mass position is very close to the shell edges, and iii) their more distant particles
happen to be in the direction of the buffer zone. The probability of ii can be estimated to
be ⇠ 10% by considering the relative width of the region with incomplete environment
(12 � 7 = 5h�1

Mpc at most) with respect to the width of the shell of the light cone
(40h�1

Mpc or 100h�1
Mpc at low and high redshift respectively)11. Therefore, out of the

50 calls to the FoF that have maximum separations larger than 7h�1
Mpc, very few of

them may cut out some particles of the largest haloes. Taking into account that the total
volume of the light cone is 108h�3

Gpc

3, these very few events represent a negligible
fraction of the haloes. In fact, this is confirmed in § 5.1.3, where it is demonstrated that

11The volume of boundary regions around the box edges has been neglected in this estimation, since it is
much smaller.
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the abundance of haloes found in the light cone is compatible with measurements from
snapshots.

Tracking shifts of particles

Parallel COLA assumes periodic boundary conditions and that all the particles as-
signed to a process have positions that are inside the sub-volume corresponding to that
process, according to the slab volume decomposition. Since particles are drifted during
the light cone construction, it is necessary to transfer to another process those that have
moved to the sub-volume assigned to another process before running the FoF. Positions
are hence trimmed to the range 0� Lbox. Particles that suffer a shift of ±Lbox in one axis
for that reason have to be tracked in advance by the light cone code, so that the displace-
ment is undone before writing haloes to the catalogue and the physical position in the
light cone is recovered.

At this point, there are two reasons for which some particles may need to be shifted
after the FoF algorithm: because their positions were trimmed or because they are ghosts
(and belong to a neighbouring replica). That can be foreseen during the light cone con-
struction and by saving this information, positions can be finally restored to the correct
physical location. To do so, a flag variable is used to encode the information. Two bites
are used for each spatial coordinate, with the meaning:

00 No displacement for this coordinate
01 A shift of �Lbox will be necessary
10 A shift of +Lbox will be necessary

So six bits store the information of the shift in the three coordinates: zzyyxx. For
instance, a value 001000 encodes a shift of (0,+Lbox, 0).

To avoid the allocation of additional memory, the field of the particles ID’s, that is
not needed any more, is used to store the flags. The FoF code, however, adds particles
to groups and discards individual particle information (including the ID). It stores the
coordinates of the first member, that serves as a reference frame, and averages relative
vectors to that. Then, to keep track of the displacements, the 6-bit flag of the first particle12

is encoded into the 32-bit integer that saves the number of particle members of the halo.
This is possible because haloes will always have less than 2

24
= 16777216 particles: the 24

rightmost bites suffice to store that integer and the remaining 8 bits in the left are unused.
The 6-bit flag is stored there. Therefore, a 32-bits integer n can contain simultaneously
the number of particles and the 6-bit flag, which can be extracted using some bitwise
operations in the C language: the 24 rightmost bits (i.e., the number of particles) are
extracted with the AND operator n & 0x00ffffff, and the 8 leftmost bits (i.e., the
6-bits flag) are recovered by shifting the variable 24 bits to the right as n >> 24.

12Only the displacement of the first particle of the group is relevant, since the halo center of mass will use
that as a reference frame. If the first particle has a shift associated, it will be applied to the whole halo at
the end of the FoF algorithm. The shifts of other particles of a halo do not affect the FoF algorithm since it
assumes periodic boundary conditions and opposite box edges are linked.
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Add buffer zones to �1 and �2;
for (ireplica = 0 ! n_replicas - 1) do

for ( i = 0 ! n_particles - 1) do
if (distance to any box edge {x,y,z} < fof_buffer) then

Ghost particle candidate: start a loop over neighbouring replicas
including the local;
if (particle within the shell including vel.&fof buffer) then

Compute crossing time;
Drift particle;
if (particle within the shell including fof buffer) then

if (Not a ghost particle in multiple replicas) then
Save particle position wrt. the origin of the local replica;
Compute 6-bit flag and store it in the ID;

else
Set 7th bit flag to 1 and save it in the ID;
Skip other neighbouring replicas and jump to next particle;

end
end

end
Exit loop over neighbouring replicas;

end
end
Find FoF haloes (using periodic boundary conditions);
Write FoF haloes (shifts of particles are restored);

end

FIGURE 4.7: Algorithm for producing catalogues of FoF in the light cone. Only the
variations with respect to the basic algorithm (see Fig. 4.2) are shown here, depicting

how buffer zones are constructed before calling the FoF routines.

Note, however, that a ghost particle might correspond simultaneously to multiple
neighbouring replicas. This is the case of the four corners in Fig. 4.5. Then, instead of
adding 6 extra bits for each occurrence, a flag is stored in the 7th bit. For those particles,
the code will check at the end all the possible 3

3
= 27 replicas and select only those for

which the position falls inside the shell.
Fig. 4.7 shows the extended algorithm to build FoF in the light cone. The parameter

fof_buffer controls the width of the buffer. Note that each replica is built indepen-
dently and once its particle distribution has been computed it calls the FoF code. First
to find the haloes and right after to write them in disk. In the latter routine is where the
necessary shifts are performed to the halo positions, just before writing.

That algorithm to apply the necessary shifts to the haloes before being written to the
catalogues is given in Fig. 4.8. First, a shift is applied if the 6-bite flag is different than
zero. Haloes not inside the local replica nor inside the shell are discarded. If the reference
particle of the halo is present in multiple replicas, there is an additional loop that iterates
over all the neighbours. When the correct replica is found, the loop is exited (because the
halo can belong only to a single replica).
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for ( i = 0 ! n_haloes - 1) do
if (First particle of the halo is not a ghost in multiple replicas) then

if (shift flag 6= 0) then
Add ±Lbox

end
if (not inside box) then

Skip halo;
end
Add displacement related to the position of the replica’s origin;
if (not inside shell) then

Skip halo;
end
Copy halo coordinates;

else
if (shift flag 6= 0) then

±Lbox

end
for ( j = 0 ! n_neigh_replicas - 1) do

if (not inside box) then
Skip halo;

end
Add displacement related to the position of replica’s origin;
if (not inside shell) then

Skip halo;
end
Copy halo coordinates;
Exit loop over neighbouring replicas;

end
end
Write this halo;

end

FIGURE 4.8: Algorithm to apply the necessary shifts to the haloes before are added to
the catalogue. The code checks wether haloes have to be shifted by ±L

box

in any of the
dimensions according to flag variables and saves those which are inside the volume

being built.
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4.4 Numerical performance

When producing numerical simulations, there are usually three main limitations coming
from the hardware resources that threaten the scalability to larger problem sizes. First is
the availability of computing time in the hosting machine or, in other words, the num-
ber of dedicated CPU-computing hours. Another constraint is the memory available per
node. In a parallel code relying on MPI communications that is run on a distributed
memory machine, each process can access a memory size given by the memory per node
divided by the number of active cores in it. That limit sets the maximum allocatable
memory per process, which means that the larger the problem size, the higher the divi-
sion into smaller pieces. Of course, this requires implementing efficient parallelization
strategies that scale to the desired configuration. And lastly, the volume of the data prod-
ucts generated is another limiting factor, first due to the time dedicated to I/O during the
run and also once the simulation has finished. To begin with, data has to be transferred
from the supercomputer to local hard drives or a data storage centre. For illustration, to
copy 1 TB per day implies at least a sustained bandwidth of 10 MB/s. And also, because
any further post-processing or the posterior analysis are data-intensive operations that
take a comparable amount of time and resources than the production of the simulation
itself.

This section reviews how ICE-COLA performs in the three aspects aforementioned
and which strategies were implemented in order to use resources efficiently.

4.4.1 Running time

During the build up of the light cone there are large particle load imbalances between
processes. The volume intersected by a shell and the slab assigned to a given process
can vary substantially, as can be seen in Fig. 4.5, where slabs in the right have 2-3 times
more particles in the light cone than the leftmost. The situation would even worsen
with volume decompositions that produce more compact regions. For that reason, some
processes may be idle while others are still working on the current box replica.

In the light cone simulations developed for this thesis, the process with rank 0 was
idle during 50% of the total time spent in the light cone. There is no simple solution
for that problem and optimizing that imbalance is left for future versions of the code.
The effort so far has been focused on trying to minimize the number of operations car-
ried out for each particle. With that spirit, § 4.2.1 explained how time varying quantities
are computed only once and are interpolated later on. Distance checks are done for all
the particles at each time step, except for replicas that do not intersect the shell and are
skipped. The crossing time and the drift operator are computed just for the relevant par-
ticles (see Fig. 4.2). Due to the buffer zones, this might happen multiple times at the end
of the simulation for particles in the buffer zones.

The code can build as many replicas as desired, since they are independent. But for
large number of replicas the light cone construction will dominate the time budget of the
simulation. The exact numbers depend on the particular code parameters. For instance,
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the simulations developed for this thesis, that generated two-dimensional maps and halo
catalogues in 64 replicas, dedicated 44% of the time for building the light cone. Inside
that routine, the time was spent in the following way: 13% to find haloes, 12% to write
catalogues, 5% to communications between processes inside the FoF routines (that could
be added to the previous 13%) and only 1.6% to the actual algorithm of the light cone,
that is, the selection of particles, computation of crossing times and evaluation of the
temporal operators. The remaining fraction was spent in smaller parts or was just idle
time.

Regarding the particle light cone catalogues, the time consumption is mainly driven
by the I/O performance, which may vary considerably in different architectures and file
systems. The results presented next correspond to a simulation that used 1024 cores on
MarenostrumIII, which uses the IBM General Parallel File System. The parameter of the
code n_files was set to 24 and the code was compiled with gcc13 using the OpenMPI14

libraries15. There were 129 calls to the light cone routine that produced data, which con-
sisted in one octant and 8 box replicas in total. Each call generated a volume of data in
the range between 1 � 15GB in most of the cases. The I/O bandwidth achieved varied
considerably for each call but typically it was in the range between 5 � 10GB/s when
the total data size was & 10GB. For smaller data volumes the bandwidth was lower, but
in all the 129 calls the wall-clock time dedicated purely to I/O was always less than 3
seconds, to be compared to the 40 minutes that took to complete the simulation.

4.4.2 Memory usage

The peak of memory consumption in COLA happens during the evaluation of forces in the
PM algorithm. This is specially true if the mesh is finer than the mean particle distance.
Other parts of the code can take advantage of that and use memory that has been freed. In
particular, Parallel COLA allocates two large shared memory blocks that are re-used
by different routines separated in time:

• mem1: used by the initial conditions, the density grid of the PM, the k-d tree of the
FoF, and the particle buffer for moving particles between processes.

• mem2: used by the density grid in Fourier space of the PM and the snapshot data
structure.

The size of each block is set to the maximum memory required for the routines of each
group. Shared memories are allocated at the beginning of the code, are used elsewhere
and are freed at the end. The light cone routine in ICE-COLA does not allocate more
memory, all the data is stored in the shared memory blocks. Depending on the kind of
catalogues that are requested, the memory needs vary:

13https://gcc.gnu.org/
14https://www.open-mpi.org/
15The support of the machine recommended the usage of the following MPI-I/O hints, that supply ex-

tra information to the MPI implementation for a better performance: striping_unit= 4194304 and
romio_cb_write=enable.

https://gcc.gnu.org/
https://www.open-mpi.org/
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• Dark matter particle distribution. Particle positions interpolated at the crossing
time are stored in the already existing snapshot data structure.

• Projected density maps. It is necessary to store multiple Healpix maps. Particle
positions are not kept, i.e., the snapshot data structure is not necessary.

• Halo catalogues. A snapshot is build similarly as for the dark matter particle out-
puts, which now includes buffer regions as well. In addition, space is needed for
the k-d tree of the FoF.

The memory set-up in Parallel COLA is already suitable to construct the snap-
shot and the FoF with particles in the light cone, which use mem2 and mem1 respectively.
However, new room is needed for the Healpix maps. If only projected density maps are
produced, then they can be saved in the shared memory blocks. However, this is not
possible if multiple outputs are requested since mem1 and mem2 are already used. Some
memory is still left at the end of the shared memory blocks, but are non-contiguous.

To avoid that, the memory layout has been slightly changed in ICE-COLA. A single
shared memory block mem is allocated at the beginning, and it is explicitly broken into
the two pieces mem1 and mem2 for compatibility with the rest of the code. The light
cone routine uses mem, inside which memory blocks are located one after the other in a
compact configuration. For example, the simulations of Chapter 5 requested 1728 and 864
MB/process for mem1 and mem2 respectively and hence mem had 2592 MB. From that, the
FoF used 708 MB, the snapshot 320 MB and the Healpix maps16 1346 MB, leaving just 218
MB unused. In this way, all the three kind of outputs can be generated simultaneously
without increasing the memory usage and running the light cone routine just a single
time at each COLA time step.

4.4.3 Disk storage requirements

Catalogues of dark matter particles in the light cone turn out to be extremely massive, as
has been already pointed out. Given the volume inside the light cone, the mean particle
density and that 24 bytes are written per particle, the data volume can be computed as

MEMDM =
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(4.9)

So an all-sky simulation having the reference scaling values (corresponding to a maxi-
mum redshift of 1.4), ⇠ 6TB of data are generated. This might be affordable only for
a single realization, or a few at most, in which detailed information of the matter field
is necessary at full resolution. But since COLA is an approximate method, very accurate

16Using the value nside = 2048, a single map has ⇠ 50 million 4-byte pixels, or 192 MB. Up to 7 shells in
the light cone might be placed between consecutive COLA time steps, which adds up to 1346 MB in total.



4.4. Numerical performance 69

results are out of the scope and presumably one will run ensembles of many realizations.
Then, it is necessary to generate only the two derived and compressed data formats.

The disk space used by the projected matter maps depends on the number of 4-byte
angular pixels and the radial bins (i.e., on the size of the spherical cell of the light cone):

MEMHP = 12n2
side ⇥ nz,bins ⇥ 4bytes

' 50⇥
⇣nside

2048

⌘2 ⇥ nz,bins

265

GB.
(4.10)

That means that it would be possible to have projected matter density fields for 1000
realizations in a disk space of 50 TB. Furthermore, it will be studied in the future if a
broader binning in redshift, i.e., the width of the light cone shells projected onto pixelated
maps, does not have an impact on the accuracy of the clustering statistics modelled. In
that way, a reduction of a factor of 2 or even more in the storage would be possible.

Finally, let’s turn into the halo catalogues. Their size depends strongly on the mini-
mum number of particles to write a halo. Haloes with few tens of particles are not well
resolved, but if the simulation is populated by galaxies in a later stage using for instance
a Halo Occupation Distribution method, undersampling issues (e.g., the Warren correc-
tion) might be corrected and therefore make sense to push the catalogue towards low
mass haloes (Howlett et al., 2015a). In the current code version, halo catalogues are writ-
ten in ascii format containing the following fields: number of particles, centre of mass
position, and halo bulk velocity17. ICE-COLA is already able to produce halo catalogues
in binary format for comoving outputs, that allows a compression factor of 3 of the file
sizes. In the light cone, however, there is the additional complication that data is ap-
pended to existing files. This has still not been resolved and will be implemented in
a future version. Following with the same reference light cone simulations, cutting at
haloes with 20 or more particles translates into 460 million haloes and 37 GB for an all
sky light cone, which is comparable or somewhat smaller than the data of the projected
matter maps. In order to extrapolate to other mass cuts, the size scales roughly inversely
proportional to the minimum number of particles18. Therefore, the rule-of-thumb for the
data volume for a halo catalogue that starts at redshift 1.4 is
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✓
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◆3
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✓
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◆�1

⇥ 2

n
dim

8

GB, (4.11)

which assumes that there is no dependence with the particle mass. This will be reduced
by a factor of three when halo catalogues are written in binary.

17The current version of the code does not keep the full halo detailed information that is necessary to
compute other halo statistics such as the velocity dispersion. In a future version this issue shall be adressed.

18Scaling that holds for masses below 1013 h�1 M�, where the abundance of haloes decreases approxi-
mately as the inverse of the mass.
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5
ANALYSIS OF LIGHT CONE CAT-
ALOGUES

In this chapter we present light cone catalogues produced with the new ICE-COLA fea-
tures described in Chapter 4 and discuss a first validation of them in terms of projected
dark matter and weak lensing observables. First, § 5.1 summarizes some basic tests on
the three kind of light cone catalogues produced by the method in order to provide a first
validation. A more elaborated analysis is presented later in § 5.2, where it is described a
full pipeline developed to model weak lensing and it is shown the accuracy with which
observables are reproduced. Chapter 6 extends this analysis in combination with halo
catalogues.

5.1 Basic validation of the light cone catalogues

5.1.1 Particle light cone

The particle light cone (see § 4.3.1) is the lower level and more massive light cone output
implemented in ICE-COLA. Given the great advantages of using the higher-level data
formats developed later in time (see § 4.3.2 and § 4.3.3) in terms of data volume and post-
processing computing requirements, the particle light cone had a limited use. However
and for completeness, some tests are presented next that demonstrate that this feature of
the code is validated.

Ten runs were developed with particle light cone. All the parameters used are the
same as the the other light cone simulations, except that the sky area covered was one
octant instead of the full sky (see § 2.4). Fig. 5.1 shows a slice of 1500h�1

Mpc wide and
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FIGURE 5.1: A slice of 1500⇥700⇥25h�1
Mpc of the particle light cone, displaying the

cosmic web. See the text for more details. A very high resolution version of the image
(of 37MB size) can be downloaded from https://github.com/albertizard/
thesis_public_material/blob/master/dm_particle_lc_slice.pdf

a thickness of 25h�1
Mpc , showing the expected cosmic web resulting from non-linear

gravitational growth. Particles were interpolated onto a grid of 30002 cells and convolved
with a 3⇥ 3 pixel gaussian kernel with a beam equal to the pixel size. The number count
at each pixel is then transformed into a colour value using the transfer function

counts ! minimum(counts

0.6
+ 3, 110), (5.1)

which enhances colour variations at low density regions and samples evenly the wide
dynamic range. Also, a saturation value is set in order to limit colour variations at very
high density regions.

Aside from this visual inspection, projected matter maps were also built from these
catalogs at post-processing and compared to the ones obtained on-the-fly from simu-
lations with identical parameters and initial conditions. The results matched perfectly,
only with small differences arising from accumulated errors due to numerical precision.
In particular, number counts were identical in 99.87% of the pixels, while in the remain-
ing differences were at most 2 counts (take into account that the mean number of counts
was 50 and the maximum 3000).

5.1.2 Projected density maps

In § 4.3.2 we introduced the two-dimensional projected matter density maps using the
Healpix discretization. The main scientific motivation for constructing them is to model
weak lensing observables, as it is done in § 5.2. As a first step towards modelling galaxy
angular clustering, this sub-section shows two-point clustering statistics measured from
the dark matter maps directly obtained from the simulation. In particular, we choose

https://github.com/albertizard/thesis_public_material/blob/master/dm_particle_lc_slice.pdf
https://github.com/albertizard/thesis_public_material/blob/master/dm_particle_lc_slice.pdf
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FIGURE 5.2: Matter angular power spectrum for a shell at mean redshift of z = 0.5
and a width of �z = 0.1. The lower panel shows the relative differences between
COLA and MICE-GC, that are within the error bars up to l ⇠ 2000 and within 10% up

to l = 4000.

a fiducial case where maps are stacked into a slice centred at redshift 0.5 and having
a width of 0.1. Fig. 5.2 shows the matter angular power spectrum measured for that
Healpix map. Circles and squares represent COLA and MICE-GC respectively. The shot
noise contribution has been subtracted according to the formula

Cnoise
l = fsky

4⇡

N
, (5.2)

where N is the number of objects in the sample and fsky is the fractional area of the sky
of the catalogue (1 if it is all-sky). At small scales it represents a 1% correction for COLA
and a factor 8 larger for MICE-GC, since the sample used in the latter is restricted to one
octant of the sky. Also, the errors in the measurements of angular power spectra can be
computed for the case of a Gaussian density field by considering the number of modes
sampled at each l-bin

�(Cl) =

s
2

fsky�l(2l + 1)

(Cl + Cnoise
l ), (5.3)
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FIGURE 5.3: Slice 100h�1
Mpc wide and 40h�1

Mpc thick comparing FoF haloes from
a catalogues in the light cone (red open circles) and a comoving output at redshift 0.5
(blue filled circles). The volume is centred at a radius of 1350h�1

Mpc from the origin,
where the time of both catalogues coincides. Grey areas denote light cone buffer zones,

either around shell (vertical shaded areas) or box (horizontal shaded) edges.

where �l is the bin width. For the ratio displayed in the lower panel, the error bars are
computed adding in quadrature the errors coming from each simulation.

The agreement is very good up to l = 2000, as can be seen better in the lower panel
displaying the relative differences, that are within 10% up to l = 4000. This is to be
expected as dynamics within haloes are not fully resolved in COLA, which contribute to
the power at these scales (see §4 and fig. 7 in Fosalba et al., 2015a for a discussion on the
mass-resolution effects).

5.1.3 Halo catalogues in the light cone

Catalogues in the light cone can be compared to catalogues coming from snapshots in the
small range of spatial and temporal coordinates where they almost coincide (i.e., assum-
ing that an observer is located somewhere within the snapshot volume). For instance,
the part of the light cone around redshift 0.5 matches with comoving outputs taken at
the same redshift for objects at a radial distance �(z = 0.5) ⇠ 1350h�1

Mpc. Fig. 5.3
compares the distribution of haloes in the light cone (red open circles) with haloes from
a comoving catalogue at z = 0.5 (blue filled circles). At object by object the agreement is
excellent in both the identification of haloes, their position and mass (which is related to
the radius of the circles drawn). There are very few cases of haloes without correspon-
dence in the other catalogue, or groups that appear as two distinct objects in one case but
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FIGURE 5.4: Comparison of the mass function measured from light cone or comoving
catalogues. Error bars display Jack-Knife estimates from the measurements of the co-
moving catalogue. Differences are very small or within the error bars, what validates

the algorithm for generating FoF in the light cone.

merged into a single halo in the other. Actually, some of these differences may be real,
since the time difference between both catalogues (comoving and light cone) is as much
as . 200Myears: the only position where the time exactly matches the light cone solu-
tion is given by the line at z = 0.5. Also, buffer zones around shell and box edges (see
4.5) are indicated as grey shaded areas, and by visual inspection there are no significant
differences between both catalogues in the limit where they intersect.

A more quantitative test is to compare the abundance of haloes between a comoving
catalogue and a shell of the light cone that has the same mean redshift . Fig. 5.4 displays
the ratio of the corresponding mass functions, at redshifts 0.5 and 1.01. The width of the
shell in the light cone is chosen so that the volume is the same as the comoving box. The
agreement is excellent again, with differences within the 1% for most of the mass range
and within the error bars estimated by jack-knife re-sampling.

The angular power spectrum of haloes is discussed in Fig. 6.1 in Chapter 6, where
additional measurements of the clustering and cross-correlation of halo samples with
weak lensing are shown.

5.2 Modelling weak lensing in cosmological simulations

The shear and convergence fields constitute basic weak lensing quantities that character-
ize the Jacobian matrix (see equation 1.32 in Chapter 1) from which other lensing fields
can be derived. In fact, they are both related to the effective lensing potential as is shown

1Redshift 0 is impossible because the light cone would have no volume.
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in § 1.4, which is a central quantity for modelling weak lensing distributions. Cosmo-
logical weak lensing simulations aim at producing these observables, which in turn can
be used to model multiple observational tools that probe weak lensing (e.g., shear map-
ping, magnification, mass mapping, aperture mass, peak statistics, lensing of the cosmic
microwave background... with two/three-dimensional statistics or in a tomographic ap-
proach).

Weak lensing can be implemented in simulations via ray-tracing techniques, which
follow the ray propagation from the source to the observer along the perturbed path, or
rather the back propagation from the observer to tge source plane in practise (see e.g.
Blandford et al., 1986; Jain et al., 2000; Das et al., 2008; Teyssier et al., 2009; Li et al., 2011).
This involves intensive computations because the deflection angle needs to be constantly
updated as the ray travels in order to determine the geometry at each encounter of the
multiple-lens system.

However, if the Born approximation is assumed (see § 1.4.2), integrations along the
straight line-of-sight are much faster as they rely on the unperturbed path from pre-
vious lens planes along the line-of-sight (i.e., lens planes are uncorrelated) and have
been successfully implemented in simulations (in which different discretization schemes
can be used, see e.g. M. White et al., 2000; Fosalba et al., 2008; Kiessling et al., 2011a).
This removes higher-order contributions and the coupling of lenses at different distances
(Krause et al., 2010), but these represent sub-percent corrections for most of the rele-
vant scales and can be neglected, specially in the case considered here in which an ap-
proximate gravitational simulation method is being used. In the Born approximation,
convergence can be estimated by employing a discretized version of equation 1.31, that
is, the projected matter density field at unperturbed photon positions weighted by the
lensing kernel. Other weak lensing quantities, such as the shear, can be derived from
the convergence (Kaiser et al., 1993). This is specially simple to implement in harmonic
space for all-sky light cone simulations (Hu, 2000). Next it is explained the methodology
employed in this thesis to convert projected density maps generated with ICE-COLA to
lensing quantities. For this we follow Fosalba et al., 2008 but adapted to the peculiarities
of COLA. Thanks to using all-sky light cones, there are no problems associated with edges
when finite areas are sampled.

5.2.1 Production of convergence maps

The density field outputted by the simulation has been discretized into multiple angular
pixels and radial bins. Therefore, the integral in equation 1.31 is converted into a sum
running over the shells

(✓i,�) =
3H2

0⌦m

2c2

�
j

<�X

j

�(✓i,�j)
(�� �j)�j

aj�
��j x, (5.4)

where��j is the width of the radial bins and the convergence map obtained inherits the
same angular pixelization as the density maps. Fig. 5.5 shows a patch of 4⇥ 4 deg

2 of the
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FIGURE 5.5: Color map of the convergence field for sources at redshift 1 in a patch
of 4 ⇥ 4 deg

2. The distribution features large voids with slightly negative values and
concentrated peaks due to massive haloes or the superposition of several of them at
intermediate distances. White ticks indicate the orientation and amplitude of the shear
field (see § 5.2.2), and as expected for a field without B-modes they are preferentially
oriented tangential to the peaks of the convergence field and point towards under-

dense regions.

maps thus obtained, which basically shows a weak lensing-weighted version of the dark
matter distribution (i.e., the cosmic web). Note that typical values of the convergence
fluctuation field are at the percent level, what illustrates that weak lensing statistics have
smaller amplitude than the underlying dark matter ones. Besides, white ticks show the
shear field, which will be explained in § 5.2.2.

Auto-power spectrum

The convergence angular power spectrum can be measured by transforming the map to
harmonic space via spherical harmonics
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and averaging the square of the coefficients over the m-modes:
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The actual measurements can be compared to a theoretical prediction for the conver-
gence power spectrum that can be derived starting from eq. 1.31 and using the Limber
approximation (Limber, 1953) to compute the two-point statistics, which results in the
expression (Kaiser, 1992; Kaiser, 1998)

C
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9H4
0⌦

2
m

4c4
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P (k =

l/�0, z)
�� �0

�2a2
d�0, (5.7)

where P (k, z) is the measured three-dimensional matter power spectrum. 2

The shot noise contribution to the convergence power spectrum, C, noise
l , that is cor-

rected for, is given by replacing the power spectrum in equation 5.7 by the inverse of the
mean number density of particles: P (k, z) = 1/n̄.

Fig. 5.6 compares the convergence power spectra for a source redshift of zs = 1 that
are obtained both from the prediction 5.7 that uses the measured matter power spectrum
(dotted curve) and from direct measurements of the angular spectrum (circles), including
as well the fiducial values from MICE-GC (squares). First, note that C

l measurements
have more power than the prediction at small scales. This can be explained because
the integral at equation 5.7, in the limit of low distances and high multipoles, needs to
evaluate the matter power spectrum at larger wavenumbers than those for which it has
been measured. Therefore it lacks some of the contributions at small scales and the power
of the convergence is hence suppressed at high multipoles. Another deviation of the
theoretical prediction is present at linear scales, where it has a slight excess of power
with respect to the the linear prediction. However, they agree within sample variance
errors.

In summary, the agreement between the actual measurements and the prediction
from equation 5.7 is quite remarkable, which constitutes a first successful validation test
of the convergence maps. Comparing now with MICE-GC, measurements are compati-
ble up to l ⇠ 10

3, beyond which COLA recovers less power. The difference is ⇠ 10(20)%

at l = 2⇥ 10

3
(4⇥ 10

3
). Note that theses are highly non-linear scales, roughly one decade

above the transition scale to the non-linear regime (i.e., where the non-linear growth
starts being significant). slightly more than one order of magnitude above the point
where the linear prediction breaks down.

2In ICE-COLA this is measured on-the-fly at each time step of the simulation thanks to a modification
of the PM routines that sums in radial k-bins the density field already transformed to Fourier space (the
three-dimensional equivalent of equation 5.6).
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FIGURE 5.6: Angular power spectrum for the convergence map for z
s

= 1. Different
symbols represent: real measurements (circles), MICE-GC measurements (squares),
theoretical prediction from equation 5.7 (dotted line), two non-linear predictions from
Halofit (Smith et al., 2003 solid line) and revised Halofit (Takahashi et al., 2012 dashed
line) and the linear case (dot-dashed). Shot noise error is denoted by the solid line in
the lower right corner. COLA is in very good agreement with MICE-GC up to l ⇠ 1000

and deviates thereafter to 10% (20%) at l = 2⇥10

3
(4⇥10

3
). The theoretical prediction

for COLA reproduces reasonably well the measurements (see the text why at small
scales there is a small deviation).

Convergence-matter cross-power spectrum

The convergence field is largely correlated with the intervining mass distribution due
precisely to the lensing effect. This is shown in Fig. 5.7 for the cross-correlation between
the convergence at zs = 1 and a lens sample at zl = 0.5 (having a width of �z = 0.1).
The matter catalogues reproduce well the signal up to l ⇠ 2000 and there is a lack of
power at smaller scales, although deviations are within 10% at all scales. The agreement
with MICE-GC is better in the cross-correlation than the auto-power spectrum of the
convergence (see Fig. 5.6). In the cross power, only the contribution to the convergence
field coming from the distribution at the lens redshift is relevant. Therefore, the accuracy
in that case depends on how well scales at this lens redshift can be resolved. However,
the convergence has contributions as well from the low-redshift structure, which span
larger angular sizes: higher multipoles associate with larger wavenumbers in the matter
power spectrum, hence more non-linear and hard to model in COLA. For that reason, the
convergence auto-power spectrum shows larger deviations than the cross component at
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FIGURE 5.7: Cross-power spectrum between the convergence at z
s

= 1 and the density
field at z

l

= 0.5 (with a width for the latter of �z = 0.1). Deviations are found only at
scales above l = 2000, as in the case of the matter power spectrum (see Fig. 5.2).

a given non-linear scale.

5.2.2 Production of shear maps

The shear field is a spin-2 tensor that in the complex notation can be expressed as two
polarization Stokes parameters: � = �1+i�2. In the all-sky formalism, the decomposition
in harmonic space is written in terms of the spin-2 spherical harmonics ±2Ylm (Hu, 2000)

±�̂lm = ✏̂lm ± iˆ�lm =

X

lm

�(✓)±2Y
⇤
lm(✓), (5.8)

where in the first equality we have introduced the so-called E- and B-modes as ✏̂lm and
ˆ�lm respectively. In the Born approximation, the shear and convergence fields are origi-
nated by a single scalar potential (see § 1.4.4) and cannot have a curl component due to
parity symmetry of the weak lensing fields. These can be decomposed into scalar and
vector modes, or E-modes and B-modes respectively in analogy with electromagnetism.
Therefore, in this approximation we have that the B-mode shear is zero: �lm = 0.

The shear and convergence are expressed as derivatives of the lensing potential in
configuration space (see equations 1.33 and 1.34). By transforming to harmonic space,
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these become multiplications by multiple wavenumbers and one can efficiently trans-
form from one weak lensing quantity to another. For instance, the shear and convergence
coefficients are related as

✏̂lm = �
s

(l + 2)(l � 1)

l(l + 1)

̂lm, (5.9)

where we assume that B-modes are null. Note that in the small angle limit (l � 1) the
coefficient is just -1 and the power spectra of both quantities coincide (see Hu, 2000).

Finally, the Stokes parameters of the shear field can be expressed as the inverse of the
transformation 5.8, which in the convention adopted by Healpix (and in the absence of
B-modes) is

�1 = �
X

lm

✏̂lmX1,lm (5.10)

�2 =
X

lm

i✏̂lmX2,lm, (5.11)

with X 1
2 ,lm

defined as the combination: X 1
2 ,lm

=

(2Y
lm

±�2Y
lm

)/2.
In summary, the steps that are taken in order to produce a shear map given a con-

vergence map are the following. First, the convergence is transformed to harmonic space
according to equation 5.5. Then the E-mode shear is obtained using 5.9 and finally the
two components in angular space are given by the inverse harmonic transforms 5.10 and
5.11. The transforms are done using Healpix (in particular Healpy3, its Python version)
and the full post-processing pipeline can be run on a modest personal computer, since
the memory and processing requirements are moderate. Using the value nside = 2048 for
the Healpix maps, that produces ⇠ 50 million pixels, a map of float values needs 192 MB
(or twice if it is stores complex numbers), which is an order of magnitude less than the
memory that a nowadays personal computer has. An harmonic transform takes 9 min-
utes in a laptop equipped with a 2.8 GHz Intel Core i7 single processor. Considering that
there are 265 maps in total and that two transforms are needed to produce a shear map,
the total time ascends to 3 days. This is proportionally reduced if many maps are read
simultaneously and processed each one by a different core, enabling doing the complete
post-processing in a single day. A visual impression of the final shear maps is displayed
in Fig. 5.5 by the white ticks. They are oriented perpendicular to the convergence peaks,
as it is expected for a field without B-mode (i.e., in the weak lensing limit), which would
generate instead swirl patterns. At empty regions, the field is radially pointing towards
under-densities. A more extensive validation of the shear is shown in Chapter 6, where
we present two-point clustering statistics for halo mock catalogues with weak lensing
quantities.

3https://healpy.readthedocs.io/en/latest/

https://healpy.readthedocs.io/en/latest/
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6
HALO CATALOGUES FOR WEAK
LENSING AND CLUSTERING

We have described the capabilities of ICE-COLA to generate halo catalogues in the light
cone (see § 4.3.3) and two-dimensional projected matter maps (see § 4.3.2), both at run
time. The latter are converted to weak lensing quantities following the method described
in § 5.2. The last step of the pipeline is to combine both in a catalogue of haloes with
weak lensing properties. To do so, each halo is assigned the convergence and shear val-
ues of the pixel where its centre of mass position lays. It is left for future work using a
better scheme by interpolating the pixelated maps to the particular position of each halo.
Furthermore, the same approach could be used for galaxies in an HOD pipeline for the
assignment of weak lensing properties.

In this chapter, two-point statistics of the halo catalogues are presented in order to val-
idate the full simulation method producing light cone catalogues and the post-processing
pipeline, as well as to test the accuracy in predicting weak lensing observables. For that
purpose, two halo samples are built: the source sample at redshift 1 and the lens sample
at 0.5. Both are all-sky, have a radial width of�z = 0.1 and include those objects with 100
or more particles (i.e., a mass of 3⇥ 10

12 h�1
M�). This results in 6M and 11M objects for

the lens and source samples respectively. The same criteria are used to draw the reference
N -body samples from MICE-GC, except that those are for one octant of the sky.

6.1 Halo angular power spectrum

The halo angular power spectrum of the lens sample is shown in Fig. 6.1. The lower
panel displays the halo bias as the ratio

p
<�h�h>/<�m�m>, where the sub-indices h and m
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FIGURE 6.1: Angular power spectra for the lens halo sample. The lower panel shows
the halo bias as measured with

p
<�h�h>/<�m�m>, which is close to 1.5. The shot-noise

term is shown as a dashed line in the upper panel and dominates for l > 500, where
both COLA and MICE-GC display a scale-dependent bias with a similar behaviour.

refer to haloes and matter repectively. At large scales it is recovered a value for the linear
halo bias of ⇠ 1.5, indicated by a dotted horizontal line. However, it is ⇠ 3% lower for
COLA, in concordance with results discussed in § 3.5.

The shot noise term has been corrected as equation 5.21. In fact, it dominates the
measurements for l > 500, where both COLA and MICE-GC display a scale-dependent
bias with a similar behaviour.

6.2 Halo-convergence cross-power spectrum

Fig. 6.2 shows the halo-convergence cross-power spectrum. The halo bias, estimated
as the ratio <

h

�
h

>/<
m

�
m

>, is consistent with a value of 1.5 in both samples and with
the value from the halo power spectrum (see Fig. 6.1). At small scales (i.e., high l’s)
the measurements feature a scale-dependent bias, with a similar trend in both COLA and
MICE-GC. For instance, l = 2000 is associated with a scale of 2h�1

Mpc at z = 0.5, only a
factor ⇠ 4 larger than the mean size of the haloes in the sample.

1Note that the shot-noise correction can be improved by modelling the halo exclusion effect (see e.g.,
Baldauf et al., 2013).
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FIGURE 6.2: Halo-convergence cross-power spectrum for the lens and source samples.
The halo bias, displayed in the lower panel, coincides to 1.5 in both samples and with
the value from the halo power spectrum (see Fig. 6.1). Scale-dependent bias shows up

in a similar fashion for both samples at l > 1000, in the highly non-linear regime.

6.3 Convergence auto-correlation

In § 5.2.1 we shown the clustering in harmonic space for the convergence maps. Next
we compute lensing second-order correlation functions in angular space using the pub-
lic code Athena2 based on a two-dimensional tree. Fig. 6.3 shows the convergence field
correlation function for the source sample at zs = 1.0. COLA reproduces the reference
MICE-GC measurements at large scales and down to separations of only 3 arcmin. De-
spite the fact that the pixel size employed is 1.7 arcmin (4 times smaller in MICE-GC),
the power is still within 25% at 1 arcmin. Hence, it is not clear whether deviation are due
only to the limited capability of COLA to resolve small scales or to the angular resolution
of the Healpix maps. It is also remarkable that the signal is well reproduced to separa-
tions that are ⇠ 5 times smaller than the scale where non-linearities arise. These results
are in agreement with Heitmann et al., 2010 (see their Fig. 1 and also §3.3 in Fosalba
et al., 2015b), where it is investigated how a systematic effect in the matter power spec-
trum translates into a suppression of the shear correlation function at small scales. In this
work, COLA recovers 50% of the power in the matter power spectrum at k ⇠ 5hMpc

�1,
2http://www.cosmostat.org/software/athena/

http://www.cosmostat.org/software/athena/
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FIGURE 6.3: Convergence correlation function for the source sample. The lower panel
displays the ratio of COLA with respect to MICE-GC. COLA recovers accurately the sig-
nal down to 3 arcmin. Error bars with solid lines are estimated with Jack-Knife, while
dashed error bars show the contribution from sample variance alone. The non-linear
predictions are computed using Halofit (Smith et al., 2003 dashed line) and revised

Halofit (Takahashi et al., 2012 solid line).

which according to Heitmann et al., 2010 should translate into a scale of ⇠ 3 arcmin in
the convergence correlation function, as we find.

Another conclusion that can be drawn is that the convergence two-point statistics is
better reproduced in configuration space than in harmonic space. The scale of 3 arcmin is
associated with the multipole of ⇠ 3600, where the convergence power spectrum largely
deviates from the full N -body (see Fig. 5.6). For reference, this scale projects onto a
comoving separation of 1h�1

Mpc at z = 0.5. A plausible explanation is that COLA does
not accurately trace the evolution of dark matter particles within haloes, introducing a
scatter in the position of the particles with a certain characteristic scale related to the halo
mean size. Correlations in configuration space are correct at those scales that are above.
But when transforming to harmonic space, small and large scales are mixed and errors
are propagated to a wider range of scales (see e.g., Monaco et al., 2013).

6.4 Shear correlations

When measuring cosmic shear around galaxy clusters, it is convenient to decompose the
shear signal in two components, the tangential �t and the cross �⇥ components. The
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FIGURE 6.4: Shear correlation functions for the source sample. The plus component
(upper panel) is accurately modelled down to 2 arcmin, while the minus (lower panel)
down to ⇠ 15 arcmin. In both cases, it corresponds to an order magnitude beyond the

non-linear scale.

polar angle � of the separation vector between two points is used to project the real and
imaginary part:

�t = �<(�e�2i�
) (6.1)

�⇥ = �=(�e�2i�
), (6.2)

where the minus sign is by convention in order to have positive values in correlation
functions, since an over-density at the lens plane generates a tangential alignment of the
background sources. The mixed correlation function < �t�⇥ > vanishes due to the parity
symmetry of these components. The non-zero shear correlation functions are usually
expressed in the two following combinations of the tangential and cross components (see
e.g. Bartelmann et al., 2001)

⇠±(✓) =< �t�t > (✓)± < �⇥�⇥ > (✓). (6.3)

Fig. 6.4 shows the shear correlation functions for the sources. The signal is well
reproduced down to 2 and ⇠ 15 arcmin for the plus and minus components respectively.
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Such different values come from the fact that the minus component is much more non-
linear, but in both cases COLA is able to accurately resolve scales an order of magnitude
smaller than the transition scale to the non-linear regime (i.e., where it deviates from the
linear prediction).

6.5 Tangential shear

Finally, the last observable studied is the correlator of the tangential shear < �t�t > be-
tween the source and lens samples. It is just the configuration space counterpart of the
cross-power spectrum C�

h

l between the convergence of sources and the density of lenses
(see Fig. 6.2). In the flat-sky limit, which is accurate enough for separations angles below
few degrees3, it is given by

�t(✓) =
1

2⇡

Z
J2(l✓)C

�
h

l l dl, (6.4)

where J2 is a Bessel function of the first kind. Fig. 6.5 shows that the measurements of the
tangential shear correlation function in COLA are in close agreement with MICE-GC for
scales larger than 5 arcmin. The theoretical curves have been multiplied by a bias factor
of 1.5 in order to match the amplitude of the matter and halo clustering. We observe
disagreement with the non-linear prediction for separations below 5 arcmin, that can be
due to non-linear bias or the accuracy in which COLA captures the non-linear evolution
within the halo structure. That scale is associated with a multipole of l ' ⇡/✓ = 2000, and
indeed it is consistent with the deviations found in harmonic space (see Fig. 6.2).

3The exact expression is given by (de Putter et al., 2010).
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FIGURE 6.5: Tangential shear for the source and lens samples. The lower panel dis-
plays the ratio with respect to the non-linear prediction from Halofit (Smith et al.,
2003, solid line), and the dashed line corresponds to the revised Halofit (Takahashi et
al., 2012). Both COLA and MICE-GC are consistent with theoretical expectations down
to 5 arcmin. At smaller scales, deviations arise due to non-linearities and exclusion

effects.
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7
ONGOING PROJECTS AND FU-
TURE WORK

This thesis presents the accuracy of the ICE-COLA method in modelling observables
in comoving (Chapter 3) and light cone catalogues (Chapters 5 and 6). The work pre-
sented focuses on the mean value of observables. The final purpose of fast methods is
to produce massive ensembles of mocks, either to estimate covariance matrices or to test
analysis pipelines, and this is precisely the aim of some ongoing work. This chapter
describes two ongoing projects for estimating covariance matrices, one from comoving
data and the other in light cone catalogues. Lastly, there are given future directions which
can be taken, many of them covering possible new features that can be implemented in
ICE-COLA.

7.1 Covariance estimates comparison project

The Euclid mission1, with a planned launch date on December 2020, as well as other fu-
ture surveys that are scheduled for the next decade such as WFIRST2 or LSST3 will pose
the most stringent requirements on ensembles of cosmological simulations, needed both
for estimating covariance matrices and to develop data reduction and analysis pipelines.
To be representative of the volume surveyed by the mission, they should cover large

1http://www.euclid-ec.org
2http://wfirst.gsfc.nasa.gov/
3http://www.lsst.org

http://www.euclid-ec.org
http://wfirst.gsfc.nasa.gov/
http://www.lsst.org
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volumes (many cubic Giga-parsecs) while retaining sufficient resolving power at small-
scales. If the requirements demand a 1% accuracy on the covariance matrices, this trans-
lates into ⇠ O(10

4
) realizations using just brute-force (Taylor et al., 2013; Blot et al., 2016).

This big challenge seems unattainable by current approximate methods, unless they are
combined with smart techniques that allow to reduce the number of realizations, such
as a theoretical modelling (Grieb et al., 2016; O’Connell et al., 2015; Pearson et al., 2016),
the tapering method (Paz et al., 2015), the shrinkage technique (Pope et al., 2008), data
compression (Tegmark et al., 1997) or re-sampling techniques (Escoffier et al., 2016).

It is therefore essential to answer the question of how many mock catalogues are nec-
essary for the Euclid project and other future missions to define the future roadmap. This
is the motivation of a project for comparing covariance estimates produced by different
approximate methods. One thousand realizations have been produced with COLA and
PINOCCHIO that are being compared with a set of 100 full N -body simulations (for more
details go to § 2.4.3). Other methods (e.g., HALOGEN, PATCHY, EZmocks) are expected
to be incorporated in the near future. Preliminary results for the variance of the halo
auto-power spectrum in redshift space are encouraging and indicate that both methods
reproduce accurately the signal of the covariance on scales k < 0.5hMpc

�1 (see Fig. 7.1).

FIGURE 7.1: Preliminary results of the variance of the halo auto-power spectrum in
redshift space for the monopole (l = 0), quadrupole (l = 2) and hexadecapole (l = 4)
from left to right. All methods use the same initial conditions and indeed, the results
show that the noise around the variance is well reproduced by the approximate meth-

ods. The sample is for haloes with M > 10

13 h�1
M� at redshift 1.

7.2 Covariances for weak lensing observables

Modelling covariance matrices of weak lensing observables is one of the main unresolved
problems in computational cosmology. This is due to the complexity of modelling non-
linear scales accurately, what typically demands large computational resources even for
a single simulation. This problem becomes prohibitive when a massive number of real-
izations are needed. The ICE-COLA code presented in thesis represents a step forward
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in such challenge. The next step is to analyse an ensemble of 68 realizations that we have
developed so far (which hopefully will be enlarged in the future) to have accurate esti-
mates of covariances for this particular probe. Furthermore, the simulations implement
halo catalogues as well and this enables a joint analysis of galaxy clustering and weak
lensing consistently, which has never done before with approximate methods. This in
turn is a key tool for many other future projects, that are outlined below.

This project shall optimize the binning in redshift for weak lensing observables in
ICE-COLA, that currently matches the values used for MICE-GC. Another aspect being
studied is the impact of the resolution of the Healpix maps on small scales, as well as the
impact of the interpolation to assign weak lensing properties at halo positions.

7.3 Future work

Given that the basic tools needed have been already developed and validated, on-going
projects are expected to be completed in a short time scale. Besides, below we describe
new ideas or projects that still need a more concrete definition or work before achieving
substantial progress.

Mid term

Partial maps

The light cone routine stores all the pixels of each Healpix maps in the current version of
ICE-COLA. However, a single process in general only modifies values of a sub-sample of
pixels that are in a compact region of the sky. This fact can be used to generate partial
Healpix maps that cover the need area, which translates into an efficient usage of memory
and probably a slightly faster code (due to the reduction of cache misses).

Impact of weak lensing covariance on cosmological inference

Regarding weak lensing covariances, the final interest of generating those is modelling
the impact of their accuracy on cosmological parameters estimation. Non-gaussianities
and non-linear mode coupling are hard to model and have a strong impact on parameter
inference, as has been shown in Kiessling et al., 2011b. With the complete set of light cone
simulations planned this issue can be addressed. Note that the simulations are all-sky:
in a study modelling a survey with 1000 deg

2 each simulation would contain 40 of such
footprints, effectively multiplying the number of survey realizations.

COLA HOD galaxy mocks

Another interesting project is populating the halo catalogues of the existing simulations
with galaxies using a hybrid Halo Occupation Distribution and Halo Abundance Match-
ing technique, as has been done for MICE-GC (Carretero et al., 2015; Crocce et al., 2015).
This is the last necessary step to model galaxy clustering in the current pipeline and re-
alistic observational effects could be implemented, such as photometric-redshifts errors,
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masking effects, survey varying conditions. . . (Leistedt et al., 2015) In turn, the galaxy
mocks thus produced could be used by the collaborations of surveys such as DES or
Euclid, distributing the catalogues to the community through a dedicated web portal,
CosmoHUB4.

Long term

Code optimization

There are many directions in which ICE-COLA can be further developed. For instance, a
first idea would be implementing the spatial-COLA idea presented in Tassev et al., 2015
to simulate a sub-volume embedded within a larger environment. This could enable
evolving independently sub-volumes of a very large simulation that fit in the computa-
tional resources available. In that way, larger and higher-resolution simulations could be
produced. Alternatively, a different approach would be implementing a two-dimensional
volume decomposition as is the case of FastPM, although it would involve a deep mod-
ification of the code. Other ideas is implementing the COLA method in a more sophisti-
cated N -body solver such as an adaptive mesh refinement algorithm. In that case, a study
would be necessary to gauge that the LPT contribution is not becoming superfluous.

Modelling of weak lensing systematics

Aside from modifications to the code, other future lines could be implementing intrinsic
alignments into the analysis pipeline (Joachimi et al., 2015; Kiessling et al., 2015; Kirk et
al., 2015). This effect is known to introduce systematic errors in cosmological analysis of
weak lensing observations and a better modelling is needed in order to understand them
and mitigate their effects. Using prescriptions of the phenomena, galaxy mock catalogues
could include a value for the orientations consistent with observations (see e.g., Singh et
al., 2016).

4http://cosmohub.pic.es/

http://cosmohub.pic.es/
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CONCLUSIONS

Next generation galaxy surveys will produce a wealth of data that will allow to test the
nature of the dark sector and test the cosmological model, narrowing down error-bars
within the percent level. However, these achievements are only possible if systematic
errors are controlled and reduced accordingly to that precision. Mock catalogues are
essential in that aspect, but producing many of them using N -body simulations becomes
very inefficient due to their huge computational cost. Instead, approximate methods
provide the adequate tools to tackle the challenge, offering an optimal balance between
accuracy and speed.

This thesis provides a series of developments in a competitive approximate method,
COLA, that can arguably represent a step forward in the optimal exploitation of future
galaxy surveys. We used a semi-N -body method and determined for the first time opti-
mal internal code parameters that provide the highest accuracy in reproducing observ-
ables while maintaining low computational requirements. We discuss its advantages
and limitations. Thanks to that optimization of parameters it is possible to resolve the
necessary scales of the matter field to model weak gravitational lensing. Indeed, we im-
plemented and validated the production of light cone simulations in a new version of
the code, named ICE-COLA, that brings the method closer to the analysis of real data. In
particular, this allowed us to accurately model weak gravitational lensing observables.

Optimization of a quasi N -body method for clustering

In order to optimize the code internal parameters, in Chapter 3 we developed a suite of
2048

3 particles COLA simulations that sampled the internal code parameter space and we
compared observables to a reference state-of-the-art N -body simulation, the MICE-GC.
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We determined the optimal configuration using as observables the two-point clustering
of matter and the abundance of haloes across a wide range in halo mass and cosmic time
(see § 3.4). We showed that too few time steps (of order 10) produce largely underesti-
mated halo masses, but that a good temporal resolution reproduces the mass function
within 5% and yields a matter power spectrum with one percent accuracy up to highly
non-linear scales, ⇠ 1hMpc

�1. Therefore, for an accurate prediction of matter clustering
and halo abundance across redshift, one needs to increase the default 10 time-steps by
a factor of a few. Above 40, however, further gains might be limited by the force reso-
lution. We show that, at least up to the fiducial 40 time steps, the COLA method is still
preferred over a PM-only simulation (see Appendix B). We also explored the time sam-
pling distribution and found that a linear distribution along the scale factor gives the best
performance regardless of the number of time steps and the initial redshift. In addition,
transients effects from the initial redshift were found to be negligible once zi & 19 within
the COLA accuracy. Starting earlier had no clear benefits. Finally, We explicitly showed
that a good force resolution is indispensable to mitigate an intrinsic systematic effect in
COLA that generates an incompleteness in the abundance of low-mass haloes.

For the optimal set-up (see § 3.4.5) we then studied the halo clustering in real and red-
shift space (see § 3.5). Without applying any re-calibration against an external N -body, we
found the halo clustering to be accurate within 2%. Incorporating the distortions in the
radial direction that the peculiar velocities add in redshift space, we found that the sig-
nal of the monopole and the quadrupole was reproduced within 4%. These conclusions
hold for wide ranges of redshifts and halo masses. Note that other approximate meth-
ods depend to a certain degree on full N -body simulations for calibrations. We further
improved the accuracy of COLA by investigating two particular recalibration schemes:
matching the abundance or the clustering of haloes. In this manner, we were able to
achieve percent level agreement in halo bias at all mass bins and redshifts and a better
agreement in redshift space down to mildly non-linear scales.

In summary, we have shown how an optimal choice of COLA code parameters, plus a
minimal halo mass recalibration, can yield clustering results to per cent agreement with
respect to full N -body for all mass bins, scales and redshifts of interest for the new gen-
eration of galaxy surveys. These results have been published in the following paper:

Towards fast and accurate synthetic galaxy catalogues optimizing a quasi N -body method,
Izard A., Crocce M., and Fosalba P., 2016, MNRAS, 459, 2327–2341, arXiv:
1509.04685.

Light cone simulations

Real observations come in the format of a light cone, in which distant objects are seen
as they were in the past1. Hence, simulations that produce catalogues in this format
enable a more realistic modelling of surveys. We implemented light cone simulations
in ICE-COLA, producing catalogues on-the-fly (see Chapter 4). It is possible to generate

1At a look-back time corresponding to the time it takes light to travel from the source to the observer.

http://arxiv.org/abs/1509.04685
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directly two-dimensional projected matter density maps in concentric spherical shells
around the observer. Moreover, the Friend-of-Friends algorithm has been adapted to run
on-the-fly in the light cone, providing halo catalogues in the light cone. In both cases,
the catalogues are generated as the simulation evolves, skipping the massive production
and post-processing of the particle three-dimensional light cone output. Thanks to that,
compression factors of two orders of magnitude in the data volume is possible. The light
cone is constructed in many box replicas, allowing for instance all-sky catalogues, and
has been carefully designed to consume the minimum computational resources. The data
products obtained with the new code are validated (see § 5.1), showing that the outputs
are reliable.

Modelling of weak gravitational lensing

We described the pipeline that we developed to model weak gravitational lensing ob-
servables from light cone catalogues (see § 5.2). This probe holds the promise of provid-
ing some of the most stringent cosmological constraints in the near future if systematic
effects are kept under control (see the introduction). But its theoretical modelling is chal-
lenging because it probes highly non-linear scales at the same time that samples very
large volumes, which is an unsolved problem in numerical cosmology. The methodol-
ogy of this thesis aims at meeting this important challenge in computational cosmology.
In particular, we produced all-sky convergence and shear maps with adequate resolu-
tion in redshift and angular scale on the sky to model weak lensing observables from the
largest (linear) to small (non-linear) scales. The pipeline uses efficiently the compressed
data catalogues and can be run on a personal laptop. The maps were compared against
MICE-GC (see § 5.2), finding that the angular auto-power spectrum is accurately repro-
duced up to multipoles of 2000 within 10% accuracy. More interestingly, we find that the
convergence-matter cross-power spectrum resolves scales of l ⇠ 4000 with the same ac-
curacy, since in this case non-linear contributions at low redshifts (that are seen at larger
angles) have a smaller contribution to the signal.

Finally, we show how to combine halo catalogues and weak lensing maps to study in a
consistent way galaxy clustering and weak lensing from a single simulation (see Chapter
6). Comparing also to MICE-GC, we found the promising results that we can reproduce
shear two-point statistics to angular separations of few arc-minutes. The particular scale
depends on each observable, but in general we find that the method predicts correctly
the signal on scales an order of magnitude beyond the linear regime. Note that other
approximate methods are not able to directly predict such regimes, since they explicitly
avoid resolving small-scale structure (within haloes).

These results constitute a further and thorough validation of the light cone simula-
tions presented before.

All the findings related to the light cone simulations and the modelling of weak lens-
ing observable are included in a forthcoming publication.
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A
TRANSIENT EFFECTS CORREC-
TION

The MICE-GC simulation used first order LPT initial conditions (Zeldovich approxima-
tion) at zi = 100. This approximation is known to yield transient effects in the distribu-
tion of matter and haloes mainly depending on the actual initial redshift used (Scocci-
marro, 1998; Crocce et al., 2006). In this appendix we quantify these effect on the matter
power spectrum and the halo mass function by using first or second order LPT for the
concrete configuration of MICE-GC. These differences are then corrected in MICE-GC
whenever in Chapter 3 we compare any measurement against those in COLA, because
otherwise it would be a source of a systematic error. We estimate them using additional
GADGET-2 simulations using the same cosmology and starting redshift as in MICE-GC
(see § 2.1.1), and evolving 1024

3 particles using either first or second order LPT. The
box size is 768h�1

Mpc in order to keep the same mass resolution as in the reference
MICE-GC N -body simulation. For the mass function we use as well a larger box size of
3072h�1

Mpc in order to have good statistics at the high mass end.
The left panel of Fig. A.1 shows the transient effects in the matter power spectrum

in real space for redshifts 0, 0.5 and 1 in solid, dashed and dotted lines respectively. The
correction is always below 2 per cent in the scales studied and remarkably similar to the
results that found by (Schneider et al., 2015) using another simulation code (see their fig.
2). The right panel displays the mass function and uses the same line styles. The verti-
cal line at M = 10

13.5 h�1
M� marks the matching mass-scale for the two runs used (the

smaller one for smaller masses and the other way around). Remind that halo masses are
defined using the Warren correction and this enables a good overlapping of measure-
ments at that matching mass-scale (in agreement with other tests for such correction, e.g.
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FIGURE A.1: Transient effects on the matter power spectrum (left panel) and the mass
function (right panel). Solid, dashed and dotted lines correspond to redshifts 0, 0.5 and
1 respectively. We show the ratio of the observables measured on a pair of identical
full N -body runs differing only in the set up of the initial conditions: first order versus
second order LPT. The simulations used the same particle mass as MICE-GC in a box
of 768h�1

Mpc, except for the mass function plot that for M > 10

13.5 h�1
M� (marked

by a vertical dashed line) used a larger box of 3072h�1
Mpc.

Crocce et al., 2010). In the mass function, differences are more important at high masses
and redshifts, going up to 5 per cent at z = 1 for the mass range of interest and they are
within 3% at z = 0. We measured as well the correction for the halo-matter cross power
spectrum, but we found it to be always within the 1 per cent so that the effect is negli-
gible. Thus, whenever we show in Chapter 3 a ratio of either mass functions or matter
power spectra with respect to MICE-GC, we have multiplied it by the corresponding ra-
tio shown in Fig. A.1. In the case of halo clustering observables we find that transient
effects are below the 1 per cent level, so we consider that we can neglect the correction
for those measurements.
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B
PERFORMANCE OF COLA WITH
RESPECT TO PARTICLE-MESH
ONLY RUNS

Tassev et al. (2013) showed that COLA simulations with as few as ten time steps recover
the matter density field much better than just doing either a particle-mesh (PM) only
simulation with the same number of time steps or a 2LPT evolution. In this thesis we
advocate the use of more time steps in order to produce mock catalogues that are accurate
in a large span of redshifts. After increasing the number of time-steps one might think
that the 2LPT part of the COLA method has a very little contribution to the dynamics and
much of the information comes from the PM integration. In this appendix we show the
relative impact of the 2LPT information when many time steps are used.

For this exercise we use the FastPM1 parallel implementation of COLA (Feng et al.,
2016). We run several PM only and COLA runs using the same set-up: 7683particles in a
box of 576h�1

Mpc by side, and we vary the number of time steps for the PM only runs
(the initial redshift is fixed at zi = 19). The green line in the left panel in Fig. B.1 shows
that the PM only method recovers less power in the matter power spectrum than COLA

for the same number of time steps. The deficit is larger at small scales and at high redshift
(dashed and dotted lines correspond to redshifts 0.0 and 1.5). The plausible explanation
is that the PM only has more difficulties to accurately integrate the equations of motions
at high redshifts, when few time steps sample each e-fold of the growth of structures2,
and differences persist until z = 0. The PM method slowly converges to COLA at large

1https://github.com/rainwoodman/fastPM.
2Note that in those runs, time steps are linearly distributed with the scale factor.
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FIGURE B.1: Left panel: matter power spectra for three PM only simulations with 20,
40 and 80 time steps from bottom to top. The reference simulation is a COLA run with
40 time steps. Dotted and dashed lines correspond to redshifts 1.5 and 0 respectively.
right panel: mass function of a PM only run with respect to a COLA one, both with 40
time steps. Plain PM simulations introduce additional systematic effects, even with as

much as 40 time steps.

scales by increasing the number of time steps. In turn, we recall that COLA reproduces
the linear growth rate accurately regardless of the number of time steps (see Fig. 3.3 in
§ 3.4.1). The right panel in Fig. B.1 displays the ratio of mass functions between the PM
only and COLA runs with 40 time steps, for various redshifts.

There is a clear underestimation that reaches 5� 10% for both high redshifts and high
masses. We have also studied the halo linear bias and found a corresponding excess
exhibiting the same trends. Both differences can be explained by a systematic underesti-
mation of the halo masses for plain PM simulations that is mass and redshift dependent.
Both panels of Fig. B.1 show that, for a similar number of time-steps, differences between
PM only and COLA decrease towards lower redshifts. As shown by the matter power
spectrum, discrepancies originate at high redshift, and late non-linear evolution masks
them (in a similar fashion than transient effects showed in Appendix A). We do not show
in Fig. B.1 full N -body values since we want to focus only on the relative effect of both
methods. Also, it is clear that plain PM simulations converge to COLA in the limit of a
large number of time steps, as both tend asymptotically to a full N -body.

One might argue that this effect on the mass function could apparently solve the over-
estimation studied in § 3.4.4. But this seems just a cancellation of errors that might intro-
duce even more undesired systematic effects. We conclude that it is worth using the
COLA method even with as many as 40 time steps. Less time-steps (e.g., 20 or fewer)
still produce accurate results for COLA, while plain PM simulations show non-negligible
biases.
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